Building Java Programs

Binary Trees

reading: 17.1 - 17.3

e

e

Trees In computer science

= () My Documents

e TreeMap and TreeSet implementations & _backup

) csel00

» folders/files on a computer ® 0 csel42

=) cseld3
= 12 09wi

» family genealogy; organizational charts © £ assassin

o Al: decision trees

o compilers: parse tree
a=(b+c)*d; @

» cell phone T9

) exams
) grades
= handouts
= 3 homework
= 1-sortedintlist

 —
Trees

tree: A directed, acyclic structure of linked nodes.
directed : Has one-way links between nodes.
acyclic : No path wraps back around to the same node twice.

binary tree: One where each node has at most two

children.
root

Recursive definition: A tree is either:

empty (null), or o

a root node that contains:

s @
. a left subtree, and

- a right subtree.

(The left and/or right e e 6 0

subtree could be empty.)

s OOy

Recursive data structure

o Recursive definition: A tree is either:
empty (null), or

a root node that contains:
- data,
- a left tree, and
- a right tree

root root root root root

e

// n
Terminology

node: an object containing a data value and left/right
children

root: topmost node of a tree

leaf: a node that has no children

branch: any internal node; neither the root nor a cheaf
roo

parent: a node that refers to this one
child: a node that this node refers to level 1
sibling: a node with a common parent

subtree: the smaller tree of nodes on level 2 G
the left or right of the current node

height: length of the longest path

from the root to any node level 3 e e e 0
level or depth: length of the path

from a root to a given node

/ P

A tree node for integers

» A basic tree node object stores data, refers to left/right
- Multiple nodes can be linked together into a larger tree

data
42

left right

L

-

left

data

right

59

left

data

right

27

left

data

right

86

m—
IntTreeNode class

// An IntTreeNode object is one node in a binary tree of ints.
public class IntTreeNode {

ORI e // data stored at this node
public IntTreeNode left; // reference to left subtree
pubivevintiPreaNodemrighhs // reference to right subtree

// Constructs a leaf node with the given data.

public IntTreeNode (int data) {
ehisitaatarmnulalvanmr iy

}

// Constructs a branch node with the given data and links.
public IntTreeNode (int data, IntTreeNode left,
IntTreeNode right) {
this.data = data;
o A IV) = W A M e)
this.right = right;
} left |data | right

 —
IntTree class

// An IntTree object represents an entire binary tree of ints.
public class IntTree {

private IntTreeNode overallRoot; // null for an empty tree
} methods overallRoot

Client code talks to the IntTree,
not to the node objects inside it.

Methods of the IntTree create
and manipulate the nodes,

their data and links between them. @ @ @ @

// =
EIIAt 11 -

» We want to write a method that prints out the contents of
dnN IntTree.

» Here is the output we want overallRoot

Iadilwigwis e wgilwed g Q
private voild print (IntTreeNode root) {

G100 00 s oY h wivedd i ol Vi ‘///////

ShYZSAW e bl ui 0% sl shied e loh it - Ruls i A

print (root.left);
print (root.right);
}

10

 —
Traversals

e Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

privateiveirdiprint{IntTreeNode root)i overallRoot
o VAR 0 o Y D I it b AN v
System.out.print (root.data + " ");
print (root.left); @
pETRE RO rIeiEs

} 43 O

171

 —
Traversals

e Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

privateiveirdiprint{IntTreeNode root)i overallRoot
o VAR 0 o Y D I it b AN v
SRR S B RSN A MAAN Ay [
System.out.print(root.data + " "); @
pETRE RO rIeiEs

} 43 O

12

 —
Traversals

e Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

privateiveirdiprint{IntTreeNode root)i overallRoot
o VAR 0 o Y D I it b AN v
SRR S B RSN A MAAN Ay [
print (root.right) ; @
System.out.print(root.data + " ");

} & 9
e post-order: 29 6 41 81 40 9 17
2 (& @) @

13

// m
Exercise

» Give pre-, in-, and post-order
traversals for the following tree:

pre: 42 152748986 125 3 39
in: 1548 274286 5 129 3 39
post: 48 27 155 12 86 39 3 42

overallRoot

14

 —
Traversal trick
» To quickly generate a traversal: overallRoot
Trace a path around the tree.
As you pass a node on the @

proper side, process it.

- pre-order: left side @ e

- in-order: bottom

- post-order: right side @ G @ @

» pre-order: 17 41 29 6 9 81 40
e in-order: 29 41 6 17 81 9 40
» post-order: 29 6 41 81 40 9 17

15

e

Exercise

- Add a method contains to the IntTree class that searches
the tree for a given integer, returning true if it is found.

If an IntTree variable tree referred to the tree below, the
following calls would have these results:

tree
tree
tree

tree

.contains
R S o s VIR A VS
.contains

.contains

overallRoot
— true

—> Lrue
— false
—> false

87 29
B @ © 6

16

e

Exercise solution

// Returns whether this tree contains the given integer.

DNdeNE Y e oG en S Y stV el N SR s MR M e e R B
return contains (overallRoot, wvalue);

}

private boolean contains (IntTreeNode node, int value) {

EuE s et T PP

return false; // base case: not found here
} else if (node.data == wvalue) {

ISt b e R e e e Ll base cases found here
e iaiend

// recursive case: search left/right subtrees
return contains (node.left, wvalue) ||
contains (node.right, wvalue) ;

17

e

Template for tree methods

public class IntTree {
private IntTreeNode overallRoot;

public type name (parameters) |
name (overallRoot, parameters) ;

}

private type name (IntTreeNode root, parameters) {

}
}

» Tree methods are often implemented recursively
with a public/private pair
the private version accepts the root node to process

18

// m
Exercise

» Add a method named printSideways to the IntTree class

that prints the tree in a sideways indented format, with right
nodes above roots above left nodes, with each level 4
spaces more indented than the one above it.

Example: Output from the tree below: overall root

1 O
14
Tl G @

7 0 O @

19

// a =
Exercise solution

// Prints the tree in a sideways indented format.
public void printSideways () {
printSideways (overallRoot, "");

}

private void printSideways (IntTreeNode root,
SN BAAN abe inaie L i et
if (root != null) {

printSideways (root.right, indent + " i

SHSYT I Rk R sttt e e ave SR AR e A e S AR e P A
printSideways (root.left, indent + " 40

20

