
Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1

2

3

Road Map
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList 🛠
• LinkedList 🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Exercise
� (To a student in the front row)

How many students total are directly behind you in your
"column" of the classroom?

� You have poor vision, so you can
see only the people right next to you.
So you can't just look back and count.

� But you are allowed to ask
questions of the person next to you.

� How can we solve this problem?
(recursively)

5

The idea
� Recursion is all about breaking a big problem into smaller

occurrences of that same problem.

� Each person can solve a small part of the problem.
� What is a small version of the problem that would be easy to

answer?
� What information from a neighbor might help me?

6

Recursive algorithm
� Number of people behind me:

� If there is someone behind me,
ask him/her how many people are behind him/her.
� When they respond with a value N, then I will answer N + 1.

� If there is nobody behind me, I will answer 0.

7

Recursion
� recursion: The definition of an operation in terms of itself.

� Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

� recursive programming: Writing methods that call
themselves to solve problems recursively.

� An equally powerful substitute for iteration (loops)
� Particularly well-suited to solving certain types of problems

8

9

Why learn recursion?
� "Cultural experience" – think differently about problems

� Solves some problems more naturally than iteration

� Can lead to elegant, simplistic, short code (when used well)

� Many programming languages ("functional" languages such
as Scheme, ML, and Haskell) use recursion exclusively (no
loops)

� A key component of many of our assignments in CSE 143

10

Getting down stairs
� Need to know two things:

� Getting down one stair
� Recognizing the bottom

� Most code will look like:
if (simplest case) {

compute and return solution

} else {

divide into similar subproblem(s)

solve each subproblem recursively

assemble the overall solution

}

11

Recursion and cases
� Every recursive algorithm involves at least 2 cases:

� base case: A simple occurrence that can be answered
directly.

� recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

� Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

� A crucial part of recursive programming is identifying these
cases.

12

Linked Lists are Self-Similar
� a linked list is:

� null
� a node whose next field references a list

� recursive data structure: a data structure partially
composed of smaller or simpler instances of the same data
structure

13

14

15

Another recursive task
� How can we remove exactly half of the M&M's in a large

bowl, without dumping them all out or being able to count
them?

� What if multiple people help out with solving the problem?
Can each person do a small part of the work?

� What is a number of M&M's
that it is easy to double,
even if you can't count?

� (What is a "base case"?)

16

Recursion in Java
� Consider the following method to print a line of *

characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars(int n) {

for (int i = 0; i < n; i++) {
System.out.print("*");

}
System.out.println(); // end the line of output

}

� Write a recursive version of this method (that calls itself).
� Solve the problem without using any loops.
� Hint: Your solution should print just one star at a time.

17

A basic case
� What are the cases to consider?

� What is a very easy number of stars to print without a loop?

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else {
...

}
}

18

Handling more cases
� Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else if (n == 2) {
System.out.print("*");
System.out.println("*");

} else if (n == 3) {
System.out.print("*");
System.out.print("*");
System.out.println("*");

} else if (n == 4) {
System.out.print("*");
System.out.print("*");
System.out.print("*");
System.out.println("*");

} else ...
}

19

Handling more cases 2
� Taking advantage of the repeated pattern (somewhat

better):
public static void printStars(int n) {

if (n == 1) {
// base case; just print one star
System.out.println("*");

} else if (n == 2) {
System.out.print("*");
printStars(1); // prints "*"

} else if (n == 3) {
System.out.print("*");
printStars(2); // prints "**"

} else if (n == 4) {
System.out.print("*");
printStars(3); // prints "***"

} else ...
}

20

Using recursion properly
� Condensing the recursive cases into a single case:

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else {
// recursive case; print one more star
System.out.print("*");
printStars(n - 1);

}
}

21

"Recursion Zen"
� The real, even simpler, base case is an n of 0, not 1:

public static void printStars(int n) {
if (n == 0) {

// base case; just end the line of output
System.out.println();

} else {
// recursive case; print one more star
System.out.print("*");
printStars(n - 1);

}
}

� Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.
(A CSE 143 informal term)

22

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {
System.out.print("*");
n--;

}
System.out.println();

}

public static void writeStars(int n) {
if (n == 0) {

System.out.println();
} else {

System.out.print("*");
writeStars(n – 1);

}
}

23

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {
System.out.print("*");
n--;

}
System.out.println(); // base case. assert: n == 0

}

public static void writeStars(int n) {
if (n == 0) {

System.out.println(); // base case
} else {

System.out.print("*");
writeStars(n – 1);

}
}

24

public static void writeStars(int n) {
while (n > 0) { // "recursive" case

System.out.print("*"); // small piece of problem
n--;

}
System.out.println();

}

public static void writeStars(int n) {
if (n == 0) {

System.out.println();
} else { // "recursive" case. assert: n > 0

System.out.print("*"); // small piece of problem
writeStars(n – 1);

}
}

Recursion vs Iteration

25

public static void writeStars(int n) {
while (n > 0) { // "recursive" case

System.out.print("*");
n--; // make the problem smaller

}
System.out.println();

}

public static void writeStars(int n) {
if (n == 0) {

System.out.println();
} else { // "recursive" case. assert: n > 0

System.out.print("*");
writeStars(n – 1); // make the problem smaller

}
}

Recursion vs Iteration

26

Recursive tracing
� Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {

return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
}

� What is the result of the following call?
mystery(648)

27

A recursive trace
mystery(648):

§ int a = 648 / 10; // 64
§ int b = 648 % 10; // 8
§ return mystery(a + b); // mystery(72)

mystery(72):
§ int a = 72 / 10; // 7
§ int b = 72 % 10; // 2
§ return mystery(a + b); // mystery(9)

mystery(9):

§ return 9;

28

Recursive tracing 2
� Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {

return (10 * n) + n;
} else {

int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

� What is the result of the following call?
mystery(348)

29

A recursive trace 2
mystery(348)

§ int a = mystery(34);
� int a = mystery(3);

return (10 * 3) + 3; // 33

� int b = mystery(4);
return (10 * 4) + 4; // 44

� return (100 * 33) + 44; // 3344

§ int b = mystery(8);
return (10 * 8) + 8; // 88

� return (100 * 3344) + 88; // 334488

� What is this method really doing?

30

Exercise
� Note: We did reverseDeck in lecture but they are the

exact same problem
� Write a recursive method reverseLines that accepts a file
Scanner and prints the lines of the file in reverse order.

� Example input file: Expected console output:

I have eaten the icebox

the plums that were in

that were in the plums

the icebox I have eaten

� What are the cases to consider?
� How can we solve a small part of the problem at a time?
� What is a file that is very easy to reverse?

31

Reversal pseudocode
� Reversing the lines of a file:

� Read a line L from the file.
� Print the rest of the lines in reverse order.
� Print the line L.

� If only we had a way to reverse the rest of the lines of
the file....

32

Reversal solution
public static void reverseLines(Scanner input) {

if (input.hasNextLine()) {
// recursive case
String line = input.nextLine();
reverseLines(input);
System.out.println(line);

}
}

� Where is the base case?

33

output:input file:
I have eaten
the plums
that were in
the icebox

the icebox
that were in
the plums
I have eaten

Tracing our algorithm
� call stack: The method invocations currently running

reverseLines(new Scanner("poem.txt"));
public static void reverseLines(Scanner input) {

if (input.hasNextLine()) {
String line = input.nextLine(); // "I have eaten"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the plums"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "that were in"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the icebox"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) { // false

...
}

}

