Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1

Road Map

CS Concepts Java Language
« Client/Implementer « EXceptions
« Efficiency « Interfaces

« References

Data Structures Java Collections
« Lists « Arrays

. Stacks . ArrayList X

« Queues . LinkedList %X

« Stack

/ m
Exercise

* (To a student in the front row)

How many students total are directly behind you in your
"column" of the classroom?

How many people are in this column?
S ... Uh, how do | figure that out again?
You have poor vision, so you can
see only the people right next to you. v

So you can't just look back and count.

But you are allowed to ask
questions of the person next to you.

How can we solve this problem?
(recursively)

The idea

e Recursion is all about breaking a big problem into smaller
occurrences of that same problem.

Each person can solve a small part of the problem.

- What is a small version of the problem that would be easy to
answer?

- What information from a neighbor might help me?

;, neighbor, help me out!

Hey neighbor, help me out!

l & ; neighbor, help me out!

/ P

/ a =
Recursive algorithm

* Number of people behind me:

o If there is someone behind me,
ask him/her how many people are behind him/her.

- When they respond with a value N, then I will answer N + 1.

» If there is nobody behind me, I will answer 0.

;ow many people are behind me?

2 How many people are behind me?

l & 1. How many people are behind me?

// o
Recursion

e recursion: The definition of an operation in terms of itself.

Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

* recursive programming: Writing methods that call
themselves to solve problems recursively.

An equally powerful substitute for iteration (loops)
Particularly well-suited to solving certain types of problems

s

Why learn recursion?

"Cultural experience" - think differently about problems

Solves some problems more naturally than iteration
Can lead to elegant, simplistic, short code (when used well)

Many programming languages ("functional” languages such
as Scheme, ML, and Haskell) use recursion exclusively (no
loops)

A key component of many of our assignments in CSE 143

/v.,———“

Getting down stairs

P ——=° Need to know two things:

8, » Getting down one stair
; « Recognizing the bottom

e Most code will look like:

if (simplest case) {
compute and return solution

} else {
divide into similar subproblem(s)
solve each subproblem recursively

assemble the overall solution

10

s

// =
Recursion and cases

* Every recursive algorithm involves at least 2 cases:

base case: A simple occurrence that can be answered
directly.

recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

A crucial part of recursive programming is identifying these
cases.

171

s OOy

Linked Lists are Self-Similar

e a linked list is:

null
a hode whose next field references a list

* recursive data structure: a data structure partially
composed of smaller or simpler instances of the same data
structure

12

g ._.\

—

/—’-‘-"‘--I

Another recursive task

* How can we remove exactly half of the M&M's in a large
bowl, without dumping them all out or being able to count
them?

» What if multiple people help out with solving the problem?
Can each person do a small part of the work?

» What is a number of M&M's
that it is easy to double,
even if you can't count?

« (What is a "base case"?)

15

// = =
Recursion In Java

* Consider the following method to print a line of *
characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
jSrvl e Mt e i s H e e e e e e AN RSV B aia Ky o e g R
IR e M s o e e e o
SYSbemaou ypranme (A

}
System.out.println() ; // end the line of output

* Write a recursive version of this method (that calls itself).
Solve the problem without using any loops.
Hint: Your solution should print just one star at a time.

16

A basic case

» What are the cases to consider?
What is a very easy number of stars to print without a loop?

pubiiw e stats o bhyd i prane SEars i
if (n == 1) {
// base case; just print one star
System.out.println("*");
} else {

}

17

e

Handling more cases

* Handling additional cases, with no loops (in a bad way):

public static void printStars (int n) {

e e
// base case; just print one star
Shashm s MR amER o s M AA I

eeE i =D
SRIAsUmEH BN e auiaR B W AR L
System.out.println("*");

T I e ==
e O e
S emE e s
SHremenoW R I s

Ieligo Wik iy e A
ShYA W=t Yo E oY outink B (iR
GNP E O D T)
SRS ashE e e R O M A o B S A
Systemrontapra ni sy

o

4

e

Handling more cases 2

» Taking advantage of the repeated pattern (somewhat

better):
Br sl e A iRt SR A e T e s B el AN RS Y BN ate I Y o o S
1if (n == 1) {
// base case; just print one star
e AW e O BRI o MR it I i (O AR
} else 1f (n == 2) {
SV S en Ol D E e
printStars (1) ; I joprints VX"
} else 1f (n == 3) {
SV Shem ouh T p TN (e
printStars (2) ; [loprints A%
e e e
R e B e DY A A e
printStars (3) ; 1/ prints VkkxV

} else

19

/ e

= .
Using recursion properly

» Condensing the recursive cases into a single case:

public static void printStars (int n) {

e
// base case; just print one star
System.out.println ("*");

} else {
// recursive case; print one more star
A he e BN AN A i WA Y
printStars(n - 1);

20

"Recursion Zen"

* The real, even simpler, base case is an n of 0, not 1:

public static void printStars (int n) {

S
// base case; just end the line of output
System.out.println();

} else {
// recursive case; print one more star
System.out.print ("*");
printStars(n - 1);

Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

21

e

/ = =
Recursion vs Iteration

public static void writeStars(int n) {
while (n > 0) {
System.out.print("*");
n--;
}
System.out.println();

public static void writeStars(int n) {
if (n == 0) {
System.out.println();
} else {
System.out.print("*");

writeStars(n — 1);

22

/ = =
Recursion vs Iteration

public static void writeStars(int n) {
while (n > 0) {
System.out.print("*");
M=y
}

System.out.println(); // base case. assert: n == 0

public static void writeStars(int n) {
if (n == 0) {
System.out.println(); // base case
} else {
System.out.print("*");

writeStars(n — 1);

23

/‘—"—.

/ = =
Recursion vs Iteration

public static void writeStars(int n) {
while (n > 0) { // "recursive" case
System.out.print("*"); // small piece of problem
n--;
}
System.out.println();

public static void writeStars(int n) {
if (n == 0) {
System.out.println();
} else { // "recursive" case. assert: n > 0
System.out.print("*"); // small piece of problem
writeStars(n — 1);

24

/_—"-«_I

/ = =
Recursion vs Iteration

public static void writeStars(int n) {
while (n > 0) { // "recursive" case

System.out.print("*");

n--; // make the problem smaller

}
System.out.println();

public static void writeStars(int n) {
if (n == 0) {
System.out.println();
} else { // "recursive" case. assert: n > 0
System.out.print("*");

writeStars(n — 1); // make the problem smaller

25

// = m
Recursive tracing

» Consider the following recursive method:

pubiwcvstatroanbamystery:brresy)
TR g
return n;
} else {
T A g e
int b =n % 10;
return mystery(a + b);

What is the result of the following call?
mystery (648)

26

// ™
A recursive trace

mystervy (648) :

Tab i e A // 64
int b = 648 % 10; // 8

return mystery(a + b): // mystery (72)

mysterv (72) :

hete i e Ll
e // 2
N N el = L G R SR // mystery(9)

mysterv (9) :

ST 1 0 M R

27

s OOy

// m =
Recursive tracing 2

» Consider the following recursive method:

pubiwcvstatroanbamystery:brresy)
i
e T
Poveiaaid
int a = mystery(n / 10);
int b = mystery(n % 10);
rearn g RS,

What is the result of the following call?
mystery (348)

28

s OOy

;§§;¢¢’_/”,__ﬁ
A recursive trace 2
mystery (348)
int a = mystery(34);
e Int a = mystery(3);
return (10 * 3) + 3; // 33
e Int b = mystery(4);
retiir Dyl // 44
soreturn (L0033 b s /7 3344
A gt e v e =Y e o
rerurnChD R aR g // 88
return (100 * 3344) + 88; // 334488

What is this method really doing?

29

// m
Exercise

* Note: We did reverseDeck in lecture but they are the
exact same problem

* Write a recursive method reverselLines that accepts a file
Scanner and prints the lines of the file in reverse order.

Example input file: Expected console output:
I have eaten the icebox

the plums e that were 1n

that were 1n the plums

the icebox I have eaten

What are the cases to consider?
« How can we solve a small part of the problem at a time?

« What is a file that is very easy to reverse?
30

s OOy

Reversal pseudocode

* Reversing the lines of a file:
Read a line L from the file.
Print the rest of the lines in reverse order.
Print the line L.

» If only we had a way to reverse the rest of the lines of
the file....

2

// =
Reversal solution

public static void reverselines (Scanner input)
TRt e Neset e (o
// recursive case
sString dianc = anpub et hine ()
reverselines (input) ;
System outipraint EnGlaney::

Where is the base case?

{

32

s OOy

// . .
Tracing our algorithm

e call stack: The method invocations currently running

reversellnes (new Scanner ("poem.txt"))

public static void reverselines (Scanner input) {

if (input.hasNextLine()) {
Ct++ainec 11ine = TInrniit nev+T ainae () . // "T hasxra aatan"
public static void reverselines (Scanner input) {
if (input.hasNextLine()) {
O b o e T 2 o A oA e e T A o [\ . VAR | V'S, ', e | |
public static void reverselilines (Scanner input) {
1if (input.hasNextLine()) {
C+r1inea 1ines = 1inriit nevtrTaine () // "+hat wara in"
public static void reverselilines (Scanner input) {
1if (input.hasNextLine()) {
Q4+ 19 e 1lanrna~s — 1T i1+ neass+T 9 () o // N"ehhAaAn am~alhaAase"
public static void reversellines (Scanner input) {
if (input.hasNextLine()) { // false
}
}
1T IIAavce CTCACLTII CIIT I TCTIOUUAX
the plums that were 1n
that were 1in the plums
the icebox I have eaten

