Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

- N
. ====

/ o

 —
Wednesday Questions

e Are ListNodes used?
Yes! In Java’s LinkedList

* What does the Stack
toString represent?

bottom “[1, 2, 31”7 top
* What program is used for
HW specs?
LaTeX
* I am a debugging master
That's awesome!

e

SWl T ebhPai1trs

Write a method switchPairs that switches each pair of
numbers in a list. If there is an odd number of nodes,

ignore the last one.
Before switchPairs ()

22

17

front =
-4 8
After switchPairs ()
front =
8 -4

17

2 |]

// 1 1
awitcnPalirs

publve e diiswiiEehPairgii)y g
if (front != null && front.next != null) {

LisENode current =" frontinexr;

Fronbinext S veurrentinexi:

current.next = front;

front = current;

gl rentr=rrenrrentione Xt

while (current.next != null && current.next.next != null) {
ListNode temp = current.next.next;
@ rentrnexXpanesi = efprnex by
empanex b ="currentinext:;
PABN S ALY LS D U R S o

GUrrenty e e Xy

s OOy

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n

e i e

int sum = 0;
Y0 s i Y e e I e e e e i v
VA8 e iy

}

A =0 5 1 00) G s T B i

* Gauss also has a way of solving this
pUub e S Eab e i b s am 2 G e

return n * (n + 1) / 2;

e Which one is more efficient?

s OOy

//. . .
Runtime Efficiency (13.2)

» efficiency: measure of computing resources used by code.
can be relative to speed (time), memory (space), etc.
most commonly refers to run time

* We want to be able to compare different algorithms to see
which is more efficient

Efficiency Try 1

e Let's time the methods!

=1

=

= 10

= 100

= 1,000

= 10,000,000

= OO0 Y

=2 A 3u e

s i e e s e S o)
|

e Downsides

suml
suml
suml
suml
suml
suml
suml

suml

WOk ey
ook Unsy
tookwimsy
took Oms,
took 0Oms,
took FBms,
took 123ms,
tooklB388ms,

sum?2
sum?2
sum?2
sum?2
sum?2
sum?2
sum?2

sum?’

Different computers give different run times

The same computer gives different results!!! D: <

took
took
Loak
took
took
took
took
took

Oms
Oms
Oms
Oms
Oms
Oms
Oms

Oms

Efficiency — Try 2

e Let's count number of “steps” our algorithm takes to run

* Assume the following:
Any single Java statement takes same amount of time to run.

Rt tah mih
 Hiiololelll = hanid oy M e e e e s s e
s Svstencoubipran b iR N He T ey

A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

A method call's runtime is measured by the total runtime of
the statements inside the method's body.

statementl;

e

Efficiency examples

statement2; . 3

statement3;

EOT

}

VS as

AL

(It e e N]
statement4; N

O e] -

statement5;

statementé6;

statement?; ~ SN
o

.

>4N+3

10

s OOy

Efficiency examples 2

Y e o A s L I I \\
ot int iy s N e N2

statementl;

}

R R A Nk e I | ™ >>|V2+.4N
statement2;
statement3;
statement4; = N
statement5;

} %

.

* How many statements will execute if N = 10? If N = 10007

171

e

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n
n

e i e
ntosm = 0 R]
S MM 0 V1 Y SV A B A - o My 1 o A
SUm e :}_ N >—N + 2
}
veturn sumy h
J

* Gauss also has a way of solving this
PUBI G S S N S T 2GR

{
return n * (n + 1) [2; }'1 }1

e Which one is more efficient?

Visualizin

Comparing sum1 and sum2

125
100

75

Number of steps

50

25

g Difference

20 40

60 80

100

- sumi

- sum2

13

s

Algorithm growth rates (13.2)

* We measure runtime in proportion to the input data size, N.

growth rate: Change in runtime as N changes.

* Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.

Consider the runtime when N is extremely large .

We ignore constants like 25 because they are tiny next to N.
The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

14

based on the algorithm's relationship to the input size N.

s OOy

Complexity classes

» complexity class: A category of algorithm efficiency

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential o(2N) multiplies drastically 5 * 101 years

15

Complexity classes

1000 - 0(1)

= O(logn)
= 0(n)

= 0O(nlogn)
= 0(n*2)
= 0(2*n)
750 = 0(n!)

500

Operations

250

20 40 60 80 100

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview 16

/ .
Range algorithm

What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range ({17, 29, 11, 4, 20, 8}) is 25
pablicistatye intyrange (znt i numbers)
Tt masepaE R // look at each pair of values
for (int 1 = 0; 1 < numbers.length; 1i++) {
for tinty =0 g nimbergilengths g ey
Vst s s e o N e el I ot s B e o R g e e e R Y
s e Whn B g A e |
maxbhi b= idirfs

}

e A e e i o

17

/ .
Range algorithm

What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range ({17, 29, 11, 4, 20, 8}) is 25
pablicistatye intyrange (znt i numbers)
Tt masepaE R // look at each pair of values
for (int 1 = 0; 1 < numbers.length; 1i++) {
for tinty =0 g nimbergilengths g ey
Vst s s e o N e el I ot s B e o R g e e e R Y
s e Whn B g A e |
maxbhi b= idirfs

}

e A e e i o

18

Range algorithm 2
The last algorithm is O(N?2). A slightly better version:

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range ({17, 29, 11, 4, 20, 8}) is 25
pablicistatye intyrange (znt i numbers)
Tt masepaE R // look at each pair of values
for (int 1 = 0; 1 < numbers.length; 1i++) {
Forawlimbwy v e nambe rsiengihy gk
Vst s s e o N e el I ot s B e o R g e e e R Y
s e Whn B g A e |
maxbhi b= idirfs

}

e A e e i o

19

Range algorithm 3
This final version is O(N). It runs MUCH faster:

// returns the range of values in the given array;
// example: range ({17, 29, 11, 4, 20, 8}) is 25

Pl e gieae e range i e)
YhE N a0 // find max/min wvalues
TR E A e ey
for (int 1 = 1; 1 < numbers.length; 1++) {
rTEonumbers i< mrn) i
min = numbers|[i];

}
TEanumbe e shrlvsimasgiid
Masvmnmben s

}

return max — min;

20

/_—"-«_I

Runtime of first 2 versions

e \ersion 1:

e \ersion 2:

N Runtime (ms)
1000 |5
2000 47
4000 203
8000 781
16000 3110
32000 12563
64000 49937

N Runtime (ms)
1000 |6
2000 16
4000 |10
8000 406
16000 1578
32000 6265
64000 25031

60000

50000

40000 -
30000 -
20000 -
10000 —

O 1 1 1 1 1 1
Q S O O O O O
Q " & & & O O

NS S SN S S

Input size (N)

30000

25000
20000 —
15000 —
10000 —

5000]

0 | 1 1 | 1 1

O S S S S
F LSS LSS
O & & S

Input size (N)

21

/_—"-«_l

e

Runtime

of 3rd version

; N Runtime (ms
e \ersion 3: 7000 5 —

2000 0

4000 0

8000 0

16000 0

32000 0

64000 0

128000 0

256000 0

512000 0

leb 0

2eb 16

4eb 31

8eb 47

|.67e7 94

3.3e7 188

6.5e7 453

|.3e8 797

2.6e8 1578

1800
1600
1400
1200
1000
800
600 -
400 18|
200 18|

Input size (N)

22

e

Searching methods

* Implement the following methods:
indexOf — returns first index of element, or -1 if not found

contains - returns true if the list contains the given int value

* Why do we need isEmpty and contains when we already
have indexOf and size ?

Adds convenience to the client of our class:

// less elegant // more elegant
ava i f VAR ame s a s b R B if (myList.isEmpty()) {
TR Ay B s e i nde xR A2y s gy if (myList.contains (42)) {

23

/ .
Sequential search

*» sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in

indexOf.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index

0

1

2

3

4

5

6

/

8

9

10

11

12

13

14

15

16

value

-4

2

/

10

15

20

22

25

30

36

42

50

56

68

85

92

103

The array is sorted. Could we take advantage of this?

24

s OOy

f Binary search (13.1)

e binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from
consideration.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index| 011123 (4|5|6|7]|8]9|10(11|12|13(14|15]| 16

value | -4 2|7 (10(15/20(22|25|30(36|42|50|56|68|85|92|103

min mid max

25

/—‘/‘d

/ '
AL s e

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, minIndex, maxIndex, value)

* The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.

» You can search the entire array, or just a range of indexes
(useful for "unfilled" arrays such as the one in ArrayIntList)

26

s OOy

//. :
Using binarySearch

// index Qv d 4 2 6 7 8 9 10 11 12 13 14 15
-4 9

T e A A A e
int index = Arrays.binarySearch(a, 0, 16, 42); // indexl is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); Llvandes2 ey

* binarySearch returns the index where the value is found

o if the value is not found, binarySearch returns:

i seyet R bl mraday

where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

To insert the value into the array, negate insertionPoint + 1

int indexToInsert2l = -(index2 + 1); // 6

27

e

Sequential search

* What is its complexity class?

public int indexOf (int wvalue) {

Forarntvnis e aieiia s e eyl)
1f (elementDatal[i] == wvalue) {
Vel Ek e e
} = N
}
return -1; // not found -
}
index| 01112 |3(4|5|6|7]|8]910|11|12(13(14(15]| 16
value|-4 (2| 7 (1011520122 |25(30|36(42|50|56|68|85(92|103

* On average, "only" N/2 elements are visited

1/2 is a constant that can be ignored

/ m
Binary search

* binary search successively eliminates half of the
elements.

Algorithm: Examine the middle element of the array.

- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.

Which indexes does the algorithm examine to find value 427
What is the runtime complexity class of binary search?

index| 011123 (4|5|6|7|8]9|10(11|12{13(14|15]| 16
value | -4 2|7 (10(15/20(22|25|30(36|42|50|56|68|85|92|103

min mid max

29

s

- .
Binary search runtime

e For an array of size N, it eliminates 2 until 1 element
remains.
N, N/2, N/4, N/S§, ..., 4, 2, 1

How many divisions does it take?

* Think of it from the other direction:
How many times do I have to multiply by 2 to reach N?
1,2,4,8, ..., N/4, N/2, N
Call this number of multiplications "x".
25— N
X = log, N

e Binary search is in the logarithmic complexity class.

30

s

" Collection efficiency

e Efficiency of our Java's ArraylList and LinkedList methods:

Method ArraylList | LinkedList
add O(1)* O(1)
add (index, value) O(N) O(N)
indexOf O(N) O(N)
get O(1) O(N)
remove O(N) O(N)
set O(1) O(N)
size O(1) O(1)

* Most of the time!

2

s OOy

Max subsequence sum

* Write a method maxSum to find the largest sum of any contiguous
subsequence in an array of integers.
Easy for all positives: include the whole array.
What if there are negatives?

index| 0111234 |5(6|7]|8
value| 2 | 1]1-4110|15]|-2|22|-8| 5

Largest sum: 10 + 15 + -2 + 22 = 45

(Let's define the max to be 0 if the array is entirely negative.)
» Ideas for algorithms?

32

e

Algorithm 1 pseudocode

a3 Serine
max = 0.
For cach starting andex 1y
for each ending index j:
sum = add the elements from af[i] to a[]].
1f sum > max,
max = sum.

return max.

index| 0111234 |5(6|7]|8
value| 2 {11]1-4110(15|-2122|-8| 5

Algorithm 1 code

* What complexity class is this algorithm?
O(N3). Takes a few seconds to process 2000 elements.

pubhiestatrevrnEimasSuml (inE ey
int max = 0;
Vi B GO (ot OB S M O M M s IV SR at e gt s)
e h w (i i SN S e S ave e i L |

// sum = add the elements from a[i] to a[j].
0

int sum =
Forfantik
sum +=

A e
ey

Elssssffssey

}
AE A s ab e Al gl @ VA
max = sum;
}
}
}

e rnmasts

34

Flaws in algorithm 1

* Observation: We are redundantly re-computing sums.

For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

Let's write an improved version that avoids this flaw.

index| 0112 (3|4 |5|6]|7]8
value| 2 | 11]1-4110|15|-2|22|-8| 5

35

Algorithm 2 code

* What complexity class is this algorithm?
O(N2). Can process tens of thousands of elements per second.

pubhies et rnE i maxSum2- (inE i aye
int max = 0;
Vi B GO (ot OB S M O M M s IV SR at e gt s)

int sum = 0O;
Reamn i un e s i e B S aVe i eV e g et
sum += a[j];
AR =BG e i 0 g o o e |
max = sum;
}
}
}

2 =3y i 1 B g Qg 4 s B,

index| 0111234 |5(6|7]|8
value| 2 | 11]1-4110|15|-2|22|-8| 5

A clever solution

e Claim 1 : A max range cannot start with a negative-sum range.
i R k
<0 sum(j+1, k)
sum(i, k) < sum(j+1, k)

e Claim 2 : If sum(i, j-1) = 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

i i k
>0 <0 sum(j+1, k)
<0 sum(j+1, k)
sum(?, k) < sum(j+1, k)

Together, these observations lead to a very clever algorithm...

Algorithm 3 code

* What complexity class is this algorithm?
» O(N). Handles many millions of elements per second!

pubhiestatrevrnE i maxSum3 i tinE i aaye

int max = 0;

int sum = 0;

bt 4 & ot iR 0

VBV MRl m i U e M s IV ala e g il o oy

if (sum < 0) { // if sum becomes negative, max range

i=3; // cannot start with any of i - j-1
sum = 0; // (Claim 2)

}
sum += alj]l;
A A = G 1 e e 11) |
max = sum;
}
}

e rnmasts

