
Building Java Programs

Chapter 16
Linked List Basics

reading: 16.2
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Wednesday Questions
� How do I debug?

� We love to teach this at IPL/OH!
� HW specs are complicated

� HWs in 143 are generally 
tougher than 142. The IPL/OH 
are helpful resources to discuss 
starting points if you’re lost.

� Are Stack/Queues more basic than 
arrays?

� What is the next programming 
language to learn?
� Python, Javascript (maybe)
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Wednesday Questions
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Linked node problem 3
� What set of statements turns this picture:

� Into this?
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Linked node problem 3
� How many ListNode variables?

� Which variables change?
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References vs. objects
variable = value;

a variable (left side of = )  is an arrow   (the base of an arrow)
a value (right side of = ) is an object   (a box; what an arrow 

points at)

� For the list at right:

� a.next = value;
means to adjust where      points

� variable = a.next;
means to make variable point at 

data next
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a data next
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data next
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data next
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list1 data next
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current
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Linked node question
� Suppose we have a long chain of list nodes:

� We don't know exactly how long the chain is.

� How would we print the data values in all the nodes?

data next
10

data next
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data next
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Algorithm pseudocode
� Start at the front of the list.
� While (there are more nodes to print):

� Print the current node's data.
� Go to the next node.

� How do we walk through the nodes of the list?

list = list.next;   // is this a good idea?
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Traversing a list?
� One (bad) way to print every value in the list:

while (list != null) {
System.out.println(list.data);
list = list.next;    // move to next node

}

� What's wrong with this approach?
� (It loses the linked list as it prints it!)

data next
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data next
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A current reference
� Don't change list.  Make another variable, and change it.

� A ListNode variable is NOT a ListNode object

ListNode current = list;

� What happens to the picture above when we write:

current = current.next;

data next
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data next
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Traversing a list correctly
� The correct way to print every value in the list:

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next;  // move to next node

}

� Changing current does not damage the list.

data next
10

data next
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Abstract data types (ADTs)
� abstract data type (ADT): A specification of a collection 

of data and the operations that can be performed on it.
� Describes what a collection does, not how it does it

� Java's collection framework describes several ADTs:
� Queue, List, Collection, Deque, List, Map, Set

� An ADT can be implemented in multiple ways:
� ArrayList and LinkedList implement List
� HashSet and TreeSet implement Set
� LinkedList, ArrayDeque, etc. implement Queue

� The same external behavior can be implemented in many 
different ways, each with pros and cons.
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A LinkedIntList class
� Let's write a collection class named LinkedIntList.

� Has the same methods as ArrayIntList:
� add, add, get, indexOf, remove, size, toString

� The list is internally implemented as a chain of linked nodes
� The LinkedIntList keeps a reference to its front as a field
� null is the end of the list;  a null front signifies an empty list

front

add(value)
add(index, value)
indexOf(value)
remove(index)
size()
toString()

LinkedIntList
ListNode ListNode ListNode

data next
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data next
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data next
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element 0 element 1 element 2
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LinkedIntList class v1
public class LinkedIntList {

private ListNode front;

public LinkedIntList() {
front = null;

}

methods go here

}

front = 

LinkedIntList
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Linked List vs. Array
� Print list values:

ListNode list= ...;

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next;

}

� Similar to array code:

int[] a = ...;

int i = 0;
while (i < a.length) {

System.out.println(a[i]);
i++;

}

Description Array Code Linked List Code
Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i++; current = current.next;
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data next
10

data next
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front data next
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Before/After
� Before

� After
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Implementing add
// Adds the given value to the end of the list.
public void add(int value) {

...
}

� How do we add a new node to the end of a list?
� Does it matter what the list's contents are before the add?

front = 
data next
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data next
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Adding to an empty list
� Before adding 20: After:

� We must create a new node and attach it to the list.

front = front = 
data next
20

element 0
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The add method, 1st try
// Adds the given value to the end of the list.
public void add(int value) {

if (front == null) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list

...

}
}
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Adding to non-empty list
� Before adding value 20 to end of list:

� After:

front = 
data next
42

data next
-3

front = 
data next
42

data next
-3

data next
20

element 0 element 1 element 2

element 0 element 1
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Don't fall off the edge!
� To add/remove from a list, you must modify the next

reference of the node before  the place you want to 
change.

� Where should current be pointing, to add 20 at the end?
� What loop test will stop us at this place in the list?

front = 
data next
42

data next
-3

element 0 element 1
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The add method
// Adds the given value to the end of the list.
public void add(int value) {

if (front == null) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode current = front;
while (current.next != null) {

current = current.next;
}
current.next = new ListNode(value);

}
}
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changing a list
� There are only two ways to change a linked list:

� Change the value of front (modify the front of the list)
� Change the value of <node>.next (modify middle or end of list 

to point somewhere else)

� Implications:
� To add in the middle, need a reference to the previous node
� Front is often a special case
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Implementing get
// Returns value in list at given index.
public int get(int index) {

...
}

� Exercise: Implement the get method.

front = 
data next
42

data next
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data next
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The get method
// Returns value in list at given index.
// Precondition: 0 <= index < size()
public int get(int index) {

ListNode current = front;
for (int i = 0; i < index; i++) {

current = current.next;
}
return current.data;

}
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Implementing add (2)
// Inserts the given value at the given index.
public void add(int index, int value) {

...
}

� Exercise: Implement the two-parameter add method.

front = 
data next
42

data next
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data next
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The add method (2)
// Inserts the given value at the given index.
// Precondition: 0 <= index <= size()
public void add(int index, int value) {

if (index == 0) {
// adding to an empty list
front = new ListNode(value, front);

} else {
// inserting into an existing list
ListNode current = front;
for (int i = 0; i < index - 1; i++) {

current = current.next;
}
current.next = new ListNode(value,

current.next);
}

}


