
Building Java Programs

Chapter 16
Linked List Basics

reading: 16.2

2

3

Wednesday Questions
� How do I debug?

� We love to teach this at IPL/OH!
� HW specs are complicated

� HWs in 143 are generally
tougher than 142. The IPL/OH
are helpful resources to discuss
starting points if you’re lost.

� Are Stack/Queues more basic than
arrays?

� What is the next programming
language to learn?
� Python, Javascript (maybe)

4

Wednesday Questions

5

Linked node problem 3
� What set of statements turns this picture:

� Into this?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

6

Linked node problem 3
� How many ListNode variables?

� Which variables change?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

A

B C

E F

D

E

D

C

7

References vs. objects
variable = value;

a variable (left side of =) is an arrow (the base of an arrow)
a value (right side of =) is an object (a box; what an arrow

points at)

� For the list at right:

� a.next = value;
means to adjust where points

� variable = a.next;
means to make variable point at

data next
10

a data next
201

2

1

2

8

data next
10

data next
20

list1 data next
30

current

9

Linked node question
� Suppose we have a long chain of list nodes:

� We don't know exactly how long the chain is.

� How would we print the data values in all the nodes?

data next
10

data next
990

list
...

data next
20

10

Algorithm pseudocode
� Start at the front of the list.
� While (there are more nodes to print):

� Print the current node's data.
� Go to the next node.

� How do we walk through the nodes of the list?

list = list.next; // is this a good idea?

data next
10

data next
990

list
...

data next
20

11

Traversing a list?
� One (bad) way to print every value in the list:

while (list != null) {
System.out.println(list.data);
list = list.next; // move to next node

}

� What's wrong with this approach?
� (It loses the linked list as it prints it!)

data next
10

data next
990

list
...

data next
20

12

A current reference
� Don't change list. Make another variable, and change it.

� A ListNode variable is NOT a ListNode object

ListNode current = list;

� What happens to the picture above when we write:

current = current.next;

data next
10

data next
990

list
...

data next
20

current

13

Traversing a list correctly
� The correct way to print every value in the list:

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next; // move to next node

}

� Changing current does not damage the list.

data next
10

data next
990

list
...

data next
20

14

Abstract data types (ADTs)
� abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
� Describes what a collection does, not how it does it

� Java's collection framework describes several ADTs:
� Queue, List, Collection, Deque, List, Map, Set

� An ADT can be implemented in multiple ways:
� ArrayList and LinkedList implement List
� HashSet and TreeSet implement Set
� LinkedList, ArrayDeque, etc. implement Queue

� The same external behavior can be implemented in many
different ways, each with pros and cons.

15

A LinkedIntList class
� Let's write a collection class named LinkedIntList.

� Has the same methods as ArrayIntList:
� add, add, get, indexOf, remove, size, toString

� The list is internally implemented as a chain of linked nodes
� The LinkedIntList keeps a reference to its front as a field
� null is the end of the list; a null front signifies an empty list

front

add(value)
add(index, value)
indexOf(value)
remove(index)
size()
toString()

LinkedIntList
ListNode ListNode ListNode

data next
42

data next
-3

data next
17

element 0 element 1 element 2

16

LinkedIntList class v1
public class LinkedIntList {

private ListNode front;

public LinkedIntList() {
front = null;

}

methods go here

}

front =

LinkedIntList

17

Linked List vs. Array
� Print list values:

ListNode list= ...;

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next;

}

� Similar to array code:

int[] a = ...;

int i = 0;
while (i < a.length) {

System.out.println(a[i]);
i++;

}

Description Array Code Linked List Code
Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i++; current = current.next;

18

data next
10

data next
20

front data next
30

Before/After
� Before

� After

data next
10

data next
20

front data next
30

data next
40

19

Implementing add
// Adds the given value to the end of the list.
public void add(int value) {

...
}

� How do we add a new node to the end of a list?
� Does it matter what the list's contents are before the add?

front =
data next
42

data next
-3

data next
17

element 0 element 1 element 2

20

Adding to an empty list
� Before adding 20: After:

� We must create a new node and attach it to the list.

front = front =
data next
20

element 0

21

The add method, 1st try
// Adds the given value to the end of the list.
public void add(int value) {

if (front == null) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list

...

}
}

22

Adding to non-empty list
� Before adding value 20 to end of list:

� After:

front =
data next
42

data next
-3

front =
data next
42

data next
-3

data next
20

element 0 element 1 element 2

element 0 element 1

23

Don't fall off the edge!
� To add/remove from a list, you must modify the next

reference of the node before the place you want to
change.

� Where should current be pointing, to add 20 at the end?
� What loop test will stop us at this place in the list?

front =
data next
42

data next
-3

element 0 element 1

24

The add method
// Adds the given value to the end of the list.
public void add(int value) {

if (front == null) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode current = front;
while (current.next != null) {

current = current.next;
}
current.next = new ListNode(value);

}
}

25

changing a list
� There are only two ways to change a linked list:

� Change the value of front (modify the front of the list)
� Change the value of <node>.next (modify middle or end of list

to point somewhere else)

� Implications:
� To add in the middle, need a reference to the previous node
� Front is often a special case

26

Implementing get
// Returns value in list at given index.
public int get(int index) {

...
}

� Exercise: Implement the get method.

front =
data next
42

data next
-3

data next
17

element 0 element 1 element 2

27

The get method
// Returns value in list at given index.
// Precondition: 0 <= index < size()
public int get(int index) {

ListNode current = front;
for (int i = 0; i < index; i++) {

current = current.next;
}
return current.data;

}

28

Implementing add (2)
// Inserts the given value at the given index.
public void add(int index, int value) {

...
}

� Exercise: Implement the two-parameter add method.

front =
data next
42

data next
-3

data next
17

element 0 element 1 element 2

29

The add method (2)
// Inserts the given value at the given index.
// Precondition: 0 <= index <= size()
public void add(int index, int value) {

if (index == 0) {
// adding to an empty list
front = new ListNode(value, front);

} else {
// inserting into an existing list
ListNode current = front;
for (int i = 0; i < index - 1; i++) {

current = current.next;
}
current.next = new ListNode(value,

current.next);
}

}

