
Building Java Programs

Chapter 14
stacks and queues

reading: 14.1-14.4

2

3

Road Map
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList 🛠
• LinkedList
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Stacks and queues
� Some collections are constrained so clients can only use

optimized operations
� stack: retrieves elements in reverse order as added
� queue: retrieves elements in same order as added

stack

queue

top 3
2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

5

Abstract data types (ADTs)
� abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
� Describes what a collection does, not how it does it

� We don't know exactly how a stack or queue is
implemented, and we don't need to.
� We just need to understand the idea of the collection and what

operations it can perform.

(Stacks are usually implemented with arrays; queues are often
implemented using another structure called a linked list.)

6

Stacks
� stack: A collection based on the principle of adding

elements and retrieving them in the opposite order.
� Last-In, First-Out ("LIFO")
� Elements are stored in order of insertion.

� We do not think of them as having indexes.
� Client can only add/remove/examine

the last element added (the "top").

� basic stack operations:
� push: Add an element to the top.
� pop: Remove the top element.
� peek: Examine the top element.

stack

top 3
2

bottom 1

pop, peekpush

7

Stack Example

push pop

bottom

top

8

Stacks in computer science
� Programming languages and compilers:

� method calls are placed onto a stack (call=push, return=pop)
� compilers use stacks to evaluate expressions

� Matching up related pairs of things:
� find out whether a string is a palindrome
� examine a file to see if its braces { } match
� convert "infix" expressions to pre/postfix

� Sophisticated algorithms:
� searching through a maze with "backtracking"
� many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

9

Class Stack

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top

System.out.println(s.pop()); // "c"

� Stack has other methods that are off-limits (not efficient)

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

10

Collections of primitives
� The type parameter specified when creating a collection

(e.g. ArrayList, Stack, Queue) must be an object type

// illegal -- int cannot be a type parameter
Stack<int> s = new Stack<int>();
ArrayList<int> list = new ArrayList<int>();

� Primitive types need to be "wrapped" in objects

// creates a stack of ints
Stack<Integer> s = new Stack<Integer>();

11

Stack limitations/idioms
� You cannot loop over a stack in the usual way.

Stack<Integer> s = new Stack<Integer>();
...
for (int i = 0; i < s.size(); i++) {

do something with s.get(i);
}

� Instead, you pull elements out of the stack one at a time.
� common idiom: Pop each element until the stack is empty.

// process (and destroy) an entire stack
while (!s.isEmpty()) {

do something with s.pop();
}

12

What happened to my stack?
� Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the
stack:

// Precondition: !s.isEmpty()
public static void max(Stack<Integer> s) {

int maxValue = s.pop();

while (!s.isEmpty()) {
int next = s.pop();
maxValue = Math.max(maxValue, next);

}
return maxValue;

}

� The algorithm is correct, but what is wrong with the code?

13

What happened to my stack?
� The code destroys the stack in figuring out its answer.

� To fix this, you must save and restore the stack's contents:

public static void max(Stack<Integer> s) {
Stack<Integer> backup = new Stack<Integer>();
int maxValue = s.pop();
backup.push(maxValue);
while (!s.isEmpty()) {

int next = s.pop();
backup.push(next);
maxValue = Math.max(maxValue, next);

}
while (!backup.isEmpty()) { // restore

s.push(backup.pop());
}
return maxValue;

}

14

Queues
� queue: Retrieves elements in the order they were added.

� First-In, First-Out ("FIFO")
� Elements are stored in order of

insertion but don't have indexes.
� Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

� basic queue operations:
� add (enqueue): Add an element to the back.
� remove (dequeue): Remove the front element.
� peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

15

Queue Example

add

remove

front back

16

Queues in computer science
� Operating systems:

� queue of print jobs to send to the printer
� queue of programs / processes to be run
� queue of network data packets to send

� Programming:
� modeling a line of customers or clients
� storing a queue of computations to be performed in order

� Real world examples:
� people on an escalator or waiting in a line
� cars at a gas station (or on an assembly line)

17

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

� IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.
� This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

18

Queue idioms
� As with stacks, must pull contents out of queue to view

them.
// process (and destroy) an entire queue
while (!q.isEmpty()) {

do something with q.remove();
}

� another idiom: Examining each element exactly once.

int size = q.size();
for (int i = 0; i < size; i++) {

do something with q.remove();
(including possibly re-adding it to the queue)

}

� Why do we need the size variable?

19

Mixing stacks and queues
� We often mix stacks and queues to achieve certain effects.

� Example: Reverse the order of the elements of a queue.
Queue<Integer> q = new LinkedList<Integer>();
q.add(1);
q.add(2);
q.add(3); // [1, 2, 3]

Stack<Integer> s = new Stack<Integer>();

while (!q.isEmpty()) { // Q -> S
s.push(q.remove());

}

while (!s.isEmpty()) { // S -> Q
q.add(s.pop());

}

System.out.println(q); // [3, 2, 1]

20

Exercises
� Write a method stutter that accepts a queue of integers

as a parameter and replaces every element of the queue
with two copies of that element.

� front [1, 2, 3] back
becomes
front [1, 1, 2, 2, 3, 3] back

� Write a method mirror that accepts a queue of strings as a
parameter and appends the queue's contents to itself in
reverse order.

� front [a, b, c] back
becomes
front [a, b, c, c, b, a] back

