
CSE 143: Computer Programming II Spring 2017
HW6: 20 Questions (due Thursday, August 10, 2017 11:30pm)
This assignment focuses on binary trees and recursion. Turn in the following files using the link
on the course website:

• QuestionsGame.java – A class that represents a tree of questions and answers

You will need the support files QuestionMain.java, spec-question.txt, and big-question.txt;
place these in the same folder as your program or project. You should not modify the provided files. The
code you submit must work properly with the unmodified versions of the provided files.

The Game of Twenty Questions
20 Questions is a guessing game in which the objective is to ask yes/no questions to determine an object.
In our version, the human begins a round by choosing some object, and the computer attempts to guess
that object by asking a series of yes/no questions until it thinks it knows the answer. Then, the computer
makes a guess; if its guess is correct, the computer wins, and otherwise you win. For example, consider
the following game:
>> Is it an animal? (y/n)? n
>> Does it have wheels? (y/n)? y
>> I guess that your object is bicycle!
>> Am I right? (y/n)? y
>> Awesome! I win!

In this assignment, you will create a class named QuestionsGame to represent the computer’s tree of
yes/no questions and answers for playing games of 20 Questions. Your QuestionsGame class MUST
contain a private static inner class named QuestionNode.
You are provided with a client QuestionMain.java that handles user interaction and calls your tree’s
methods to play the games.

QuestionNode
The contents of the QuestionNode class are up to you. Though we have studied trees of ints, you should
create nodes specific to solving this problem. Your QuestionNode class should have at least one construc-
tor used by your tree. Your QuestionNode class must be private static inner class within QuestionGame.
Your node’s fields must be public. Any fields representing data must be final. QuestionNode should not
contain any actual game logic. It should only represent a single node of the tree. For reference, you can
look at the AssassinNode class from HW3 or the IntTreeNode class from lecture.

QuestionsGame
This class represents a game of 20 Questions.

It keeps track of a binary tree whose nodes represent questions and answers. (Every node’s data is a
string representing the text of the question or answer.)

The leaves of the tree represent possible answers (guesses) that the computer might make. All the other
nodes represent questions that the computer will ask to narrow the possibilities. The left branch indicates
the next question the computer asks if the answer is yes, and the right branch is the next question if the
answer is no.

Note that even though the name of the game is “20 questions”, the computer will not be limited to only
twenty ; the tree may have a larger height.

1



QuestionsGame should have the following constructors:

public QuestionsGame(String initialObject)

This constructor should initialize a new QuestionsGame object with a single leaf node representing
the object initialObject. You may assume the String is not null.
To get QuestionMain to use this constructor, you should supply an empty file or one that doesn’t
exist.

public QuestionsGame(Scanner input)

This constructor should initialize a new QuestionsGame object by reading from the provided Scanner
containing a tree of questions in standard format. You may assume the Scanner is not null and
is attached to a legal, existing file in standard format. Make sure to read entire lines of input using
calls on Scanner’s nextLine.

QuestionsGame should also implement the following methods:

public void saveQuestions(PrintStream output)

This method should store the current questions tree to an output file represented by the given
PrintStream. This method can be used to later play another game with the computer using
questions from this one. You should throw an IllegalArgumentException if the PrintStream is
null.

public void play()

This method should use the current question tree to play one complete guessing game with the user,
asking yes/no questions until reaching an answer object to guess. A game begins with the root node
of the tree and ends upon reaching an answer leaf node.

If the computer wins the game, this method should print a message saying so.

Otherwise, this method should ask the user for the following:
• what object they were thinking of,
• a question to distinguish that object from the player’s guess, and
• whether the player’s object is the yes or no answer for that question.

User Input: Yes and No
At various points in this assignment, you will need to get a yes or no answer from the user. You must
construct a single console Scanner that you store in a data field and use throughout your class.
You should consider any word that begins with “y” to be “yes” (Yes, YUP, yeehaw), and anything else
to be a no. The easiest way to do this, assuming console is a Scanner linked to System.in:
console.nextLine().trim().toLowerCase().startsWith("y")

Question Tree “Standard Format”
In saveQuestions and the second constructor, your class will be interacting with files containing ques-
tions. Just like with BNF where we used a common format so everyone could share the same grammars,
here, we specify a common question tree format.

A single QuestionNode should be represented as a non-empty sequence of line pairs. The first line of
the pair should contain either “Q:” or “A:” to differentiate between questions (branches) and answers
(leaves). The second line of the pair should contain the text for that node (the actual question or answer).

The nodes of the tree should appear in pre-order. The readTree and writeTree methods from section
will be very helpful for any method that deals with this format.

2



Full Example Walk-Through
spec-questions.txt

Q:
Is it an animal?
Q:
Can it fly?
A:
bird
Q:
Does it have a tail?
A:
mouse
A:
spider
Q:
Does it have wheels?
A:
bicycle
Q:
Is it nice?
A:
TA
A:
teacher

yes

yes no

no

yes

yes

yes no

no

no

Is it an animal?

Can it fly?

bird Does it have a tail?

mouse spider

Does it have wheels?

bicycle Is it nice?

TA teacher

The following output log shows one game being played on the above tree:
>> Welcome to CSE 143 Game of N-Questions!
>>
>> Which questions file would you like to use? spec-questions.txt
>> Let's play! Please choose your object, and I'll start guessing.
>> Press Enter when you're ready to begin!
>>
>> Is it an animal? (y/n)? n
>> Does it have wheels? (y/n)? y
>> I guess that your object is bicycle!
>> Am I right? (y/n)? y
>> Awesome! I win!
>>
>> Do you want to play again (y/n)? n

Initially, the computer is not very intelligent, but it grows smarter each time it loses a game. If the
computer guesses incorrectly, it asks you to give it a new question to help in future games. For example,
suppose in the preceding log that the player was thinking of a car instead. You might get this game log:
>> Welcome to CSE 143 Game of N-Questions!
>>
>> Which questions file would you like to use? spec-questions.txt
>> Let's play! Please choose your object, and I'll start guessing.
>> Press Enter when you're ready to begin!
>>
>> Is it an animal? (y/n)? n
>> Does it have wheels? (y/n)? y
>> I guess that your object is bicycle!
>> Am I right? (y/n)? n
>> Boo! I Lose. Please help me get better!
>> What is your object? car
>> Please give me a yes/no question that distinguishes between car and bicycle.
>> Q: Does it get stuck in traffic?
>> Is the answer "yes" for car? (y/n)? y
>>
>> Do you want to play again (y/n)? n

The computer takes the new information from a lost game and uses it to replace the old incorrect answer
node with a new question node that has the old incorrect answer and new correct answer as its children.

3



After the preceding log, the computer’s overall game tree would be the following:
spec-questions.txt

Q:
Is it an animal?
Q:
Can it fly?
A:
bird
Q:
Does it have a tail?
A:
mouse
A:
spider
Q:
Does it have wheels?
Q:
Does it get stuck in traffic?
A:
car
A:
bicycle
Q:
Is it nice?
A:
TA
A:
teacher

yes

yes no

no

yes

yes no

yes

yes no

no

no

Is it an animal?

Can it fly?

bird Does it have a tail?

mouse spider

Does it have wheels?

Does it get stuck in traffic?

car bicycle

Is it nice?

TA teacher

Note that, as usual, your output must match the output in the specification exactly. The output com-
parison tool will be helpful to make sure that your output is identical.

Creative Aspect (myquestions.txt)
Along with your program, turn in a file myquestions.txt that represents a saved question tree in the
format specified from your saveQuestions method. For full credit, this must be in proper format, have
at least 5 questions, and be your own work.

Development Strategy
We suggest that you develop the program in the following stages:

(1) Before you begin, you should “stub” the methods you intend to write. In other words, you want to
be able to test using QuestionsMain; so, you should provide “dummy” methods that do nothing
for it to call.

(2) First, you should decide what fields belong in the QuestionNode and QuestionsGame classes.
Once you’ve chosen the fields, you should implement the first constructor (the one that takes a
String).

(3) Next, you should implement saveQuestions (because it’s easier than loading them). Make sure
to look back at writeTree from the section handout!

(4) Then, you should implement the second constructor which reads in a question tree. Make sure to
look back at readTree form the section handout!

(5) Finally, you should implement play. At this point, you’ll be able to play the game. When you play,
you can add questions one by one and play with your game to check if it’s working.

4



Style Guidelines and Grading
Part of your grade will come from appropriately utilizing binary trees and recursion to implement 20 ques-
tions as described previously. Every method with complex code flow should be implemented recursively,
rather than with loops. A full-credit solution must have zero loops. We will also grade on the elegance
of your recursive algorithm; don’t create special cases in your recursive code if they are unnecessary.

x = change(x)
An important concept introduced in lecture was called x = change(x). This idea is related to proper
design of recursive methods that manipulate the structure of a binary tree. You must follow this pattern
on this assignment to receive full credit on this assignment.

For example, at the end of a game lost by the computer, you might be tempted to “morph” what used
to be an answer node of the tree into a question node. Since the data in your question node must be
final, this should not compile. One of the reasons this is the case is question nodes and answer nodes
are fundamentally different kinds of data. You can rearrange where nodes appear in the tree, but you
shouldn’t turn a answer node into a question node just to simplify the programming you need to perform.

Avoid Redundancy
Create “helper” method(s) to capture repeated code. As long as all extra methods you create are private
(so outside code cannot call them), you can have additional methods in your class beyond those specified
here. If you find that multiple methods in your class do similar things, you should create helper method(s)
to capture the common code.

Generic Structures
You should always use generic structures. If you make a mistake in specifying type parameters, the
Java compiler may warn you that you have “unchecked or unsafe operations” in your program. If you
use jGRASP, you may want to change your settings to see which line the warning refers to. Go to
Settings/Compiler Settings/Workspace/Flags/Args and then uncheck the box next to “Compile”
and type in: -Xlint:unchecked

Data Fields
Properly encapsulate your objects by making your fields private. (You can and should make your fields
in QuestionNode public.) Avoid unnecessary fields; use fields to store important data of your objects
but not to store temporary values only used in one place. Fields should always be initialized inside a
constructor or method, never at declaration.

Java Style Guidelines
Appropriately use control structures like if/else statements. On this specific assignment, you should not
need to use any loops. Avoid redundancy using techniques such as methods and factoring common code
out of if/else statements. Properly use indentation, good variable names, and types. Do not have any
lines of code longer than 100 characters.

Commenting
You should comment your code with a heading at the top of your class with your name, section, and
a description of the overall program. All method headers should be commented as well as all complex
sections of code. Make sure you describe complex methods inside methods. Comments should explain each
method’s behavior, parameters, return values, and assumptions made by your code, as appropriate. The
ArrayIntList class from lecture provides a good example of the kind of documentation we expect you
to include. You do not have to use the pre/post format, but you must include the equivalent information
– including the type of exception thrown if a precondition is violated. Write descriptive comments that
explain error cases, and details of the behavior that would be important to the client. Your comments
should be written in your own words and not taken verbatim from this document.

5


