
1 of 5

CSE 143 Sample Midterm Exam #8 (12wi)

1. ArrayList Mystery
Consider the following method:

public static void mystery(ArrayList<Integer> list) {
 for (int index = 0; index < list.size(); index++) {
 int elementValue = list.remove(index);
 if (elementValue % 2 == 0) {
 list.add(index);
 }
 }
 System.out.println(list);
}

Write the output produced by the method when passed each of the following ArrayLists:

List Output

a) [5, 2, 5, 2]
b) [3, 5, 8, 9, 2]
c) [0, 1, 4, 3, 1, 3]

2. Recursive Tracing

For each of the calls to the following recursive method below, indicate what output is produced:
public static void mystery(int x, int y) {
 if (y <= 0) {
 System.out.print("0 ");
 } else if (x > y) {
 System.out.print(x + " ");
 mystery(x - y, y);
 } else {
 mystery(x, y - x);
 System.out.print(y + " ");
 }
}

Call Output

a) mystery(6, 3);
b) mystery(2, 3);
c) mystery(5, 8);
d) mystery(21, 12);
e) mystery(3, 10);

2 of 5

3. Collections
Write a method byAge that accepts three parameters: 1) a Map where each key is a person's name (a string) and the
associated value is that person's age (an integer); 2) an integer for a minimum age; and 3) an integer for a max age.
Your method should return a new map with information about people with ages between the min and max, inclusive.

In your result map, each key is an integer age, and the value for that key is a string with the names of all people at that
age, separated by "and" if there is more than one person of that age. Include only ages between the min and max
inclusive, where there is at least one person of that age in the original map. If the map passed in is empty, or if there
are no people in the map between the min/max ages, return an empty map.

For example, if a Map named ages stores the following key=value pairs:
{Paul=28, David=20, Janette=18, Marty=35, Stuart=98, Jessica=35, Helene=40,
 Allison=18, Sara=15, Grace=25, Zack=20, Galen=15, Erik=20, Tyler=6, Benson=48}

The call of byAge(ages, 16, 25) should return the following map (the contents can be in any order):
{18=Janette and Allison, 20=David and Zack and Erik, 25=Grace}

For the same map, the call of byAge(ages, 20, 40) should return the following map:
{20=David and Zack and Erik, 25=Grace, 28=Paul, 35=Marty and Jessica, 40=Helene}

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• You will need to construct a map to store your results, but you may not use any other structures (arrays, lists,
etc.) as auxiliary storage. (You can have as many simple variables as you like.)

• You should not modify the contents of the map passed to your method.
• Your solution should run in no worse than O(N log N) time, where N is the number of pairs in the map.

3 of 5

4. Stacks and Queues
Write a method isSorted that accepts a stack of integers as a parameter and returns true if the elements in the stack
occur in ascending (non-decreasing) order from top to bottom, and false otherwise. That is, the smallest element
should be on top, growing larger toward the bottom. For example, passing the following stack should return true:
bottom [20, 20, 17, 11, 8, 8, 3, 2] top

The following stack is not sorted (the 15 is out of place), so passing it to your method should return a result of false:
bottom [18, 12, 15, 6, 1] top

An empty or one-element stack is considered to be sorted. When your method returns, the stack should be in the same
state as when it was passed in. In other words, if your method modifies the stack, you must restore it before returning.

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• You may use one queue or one stack (but not both) as auxiliary storage.
You may not use other structures (arrays, lists, etc.), but you can have as many simple variables as you like.

• Use the Queue interface and Stack/LinkedList classes discussed in class.
• Use stacks/queues in stack/queue-like ways only. Do not use index-based methods such as get, search, or

set, or for-each loops or iterators. You may call add, remove, push, pop, peek, isEmpty, and size.
• Your solution should run in O(N) time, where N is the number of elements of the stack.

You have access to the following two methods and may call them as needed to help you solve the problem:
public static void s2q(Stack<Integer> s, Queue<Integer> q) { ... }
public static void q2s(Queue<Integer> q, Stack<Integer> s) { ... }

4 of 5

5. Linked Lists
Write a method minToFront to be added to the LinkedIntList class. Your method should move the smallest
element value to the front of the linked list. Suppose a LinkedIntList variable named list stores these elements:

[7, 9, 12, 5, 3, 17]

If you made the call of list.minToFront(); , the list would then store the elements:
[3, 7, 9, 12, 5, 17]

If the list has more than one occurrence of the minimum value, the first occurrence is the only one that should be
moved. For example, [7, 9, 3, 12, 5, 3, 17, 3] becomes [3, 7, 9, 12, 5, 3, 17, 3]. If the list is
empty, calling your method should have no effect.

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• Do not call any other methods on the LinkedIntList object, such as add, remove, or size.
• Do not create new ListNode objects (though you may have as many ListNode variables as you like).
• Do not use other data structures such as arrays, lists, queues, etc.
• Your solution should run in O(N) time, where N is the number of elements of the linked list.

Assume that you are adding this method to the LinkedIntList class (that uses the ListNode class) below.
public class LinkedIntList { public class ListNode {
 private ListNode front; public int data;
 ... public ListNode next;
 ...

5 of 5

6. Recursive Programming
Write a recursive method moveToEnd that accepts a String s and a char c as parameters, and returns a new String
similar to s but with all occurrences of c moved to the end. The relative order of the other characters should be
unchanged from their order in the original string s. If s does not contain c, it should be returned unmodified.

The following table shows calls to your method and their return values. Occurrences of c are underlined for clarity.

Call Returns
moveToEnd("hello", 'l') "heoll"
moveToEnd("hello", 'e') "hlloe"
moveToEnd("hello there", 'e') "hllo threee"
moveToEnd("hello there", 'q') "hello there"
moveToEnd("HELLO there", 'e') "HELLO three"
moveToEnd("", 'x') ""

You may not construct any structured objects other than Strings (no array, List, Scanner, etc.). You will examine
the String one character at a time but you may not use any loops to solve this problem; you must use recursion.

