
Write a static method subsets3 that uses recursive backtracking to find every possible subset of
exactly size 3 of a given list. Your method should accept a List of strings as its parameter and print
every subset of that could be created from 3 elements from the list, one per line. For example, suppose
a variable called list stores the following elements:

[Janet, Robert, Morgan, Char]

The call of subsets3(list); would produce output such as the following:
[Janet, Robert, Morgan]
[Janet, Robert, Char]
[Janet, Morgan, Char]
[Robert, Morgan, Char]

The order in which you show the subsets does not matter, and the order of the elements of each subset
also does not matter. The key thing is that your method should produce the correct overall set of subsets
as its output. You may assume that the list passed to your method is not null and that the list contains
no duplicates. In your solution, you should not recurse unnecessarily, as this would be inefficient for
large lists.
As a hint, Section 14 handout had a problem called subsets that asked you to print all possible subsets
of a list of any size. That is, all subsets containing 0 or more elements from the list. The solution for
subset is as follows

public static void subsets(List<String> elements) {
 List<String> chosen = new ArrayList<String>();
 subsets(elements, chosen);
}

private static void subsets(List<String> elements, List<String> chosen) {
 if (elements.isEmpty()) {
 System.out.println(chosen);
 } else {
 String first = elements.remove(0);

 chosen.add(first);
 subsets(elements, chosen);
 chosen.remove(chosen.size() - 1);
 subsets(elements, chosen);

 elements.add(0, first);
 }
}

Solution

public static void subsets3(List<String> elements) {
 subset3(elements, new ArrayList<String>());
}

public static void subsets3(List<String> elements, List<String> chosen) {
 if (chosen.size() == 3) {
 System.out.println(chosen);
 } else if (!elements.isEmpty()) {
 String first = elements.remove(0);
 chosen.add(first);
 subsets3(elements, chosen);
 chosen.remove(chosen.size() - 1);
 subsets3(elements, chosen);
 elements.add(0, first);
 }
}
	

