Building Java Programs

Interfaces and Comparable
reading: 9.5 - 9.6, 10.2, 16.4

Shapes

e Consider the task of writing classes to represent 2D shapes
such as Circle, Rectangle, and Triangle.

e Certain operations are common to all shapes:
perimeter: distance around the outside of the shape
area: amount of 2D space occupied by the shape

Every shape has these, but each computes them differently.

—

// .
Shape area and perimeter

e Circle (as defined by radius r):
area =lonr?
perimeter =2nr

» Rectangle (as defined by width w and height h):

W
area = wh
perimeter = 2w + 2h -
* Triangle (as defined by side lengths a, b, and c)
area =ls(s-a)(c-D)(s-c}) b

wheres =2 (a + b + ¢) a
perimeter =a+b+c¢C

/ =
Common behavior

e Suppose we have 3 classes Circle, Rectangle, Triangle.
Each has the methods perimeter and area.

» We'd like our client code to be able to treat different kinds
of shapes in the same way:
Write a method that prints any shape's area and perimeter.
Create an array to hold a mixture of the various shape objects.

Write a method that could return a rectangle, a circle, a
triangle, or any other kind of shape.

Make a DrawingPanel display many shapes on screen.

Interfaces (9.5)

* interface: A list of methods that a class can promise to
implement.

Inheritance gives you an is-a relationship and code sharing.
« A Lawyer can be treated as an Employee and inherits its code.

Interfaces give you an is-a relationship without code sharing.
« A Rectangle oObject can be treated as a shape but inherits no code.

Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

- "I'm 'certified' as a Shape, because I implement the Shape
interface.

This assures you I know how to compute my area and perimeter."”

Interface syntax

public interface name ({

public type name (type name, ..., type name);
public type name (type name, ..., type name);
public type name (type name, ..., type name);
}
Example:

// Describes features common to all shapes.

oiblel s Rl S e Ve =Sl aV e T =R
public double area () ;
public double perimeter () ;

Shape interface

// Describes features common to all shapes.

public interface Shape {
publacidoublelareait);

public double perimeter(); cinterface»
} Shape
areaf)
A petimeter()
Saved as Shape.java o
Circle Rectangle Triangle
radius width, height ab,c
Circle{radius) Rectanglefw,h) Triangle(a, b, ¢}
area() areal) areal)
perimeter() perimeter)) perimeter()

» abstract method: A header without an implementation.

The actual bodies are not specified, because we want to allow
each class to implement the behavior in its own way.

—

/ . .
Implementing an interface

public class name implements interface

}

* A class can declare that it "implements" an interface.
The class must contain each method in that interface.

public class Bicycle implements Vehicle ({

}

(Otherwise it will fail to compile.)
B B e B I e e s Ve i o va i Mo sV s o Wit Doa e iR A
override abstract method area () in Shape

public class Banana implements Shape {

N

/ AR

Interface requirements

public class Banana implements Shape {
// haha, no methods! pwned

o If we write a class that claims to be a shape but doesn't
implement area and perimeter methods, it will not
compile.

T N R o il i e N e e eV A e M il s o i P e S e
override abstract method area () in Shape

public class Banana implements Shape ({

A

10

—

Interfaces + polymorphism

e Interfaces benefit the client code author the most.

They allow polymorphism.
(the same code can work with different types of objects)

public static void printInfo (Shape s) {

Sy e temvolEvprintbn G e sshapemaiidureas

WM SR e s ye Y s an auwE Ml e W s e e e e A

Shictwsniiieibie ohanli sl el e et an i i s e sl sy s e e
(

Systemioubiprintin ()

B e e e T e e

T ey evispyrsnawaiipa ancehes: a2l
ShssE M EA RN B ol N & el i

BN by A MW Ve o ol A

/-/

Linked vs. array lists

* We have implemented two collection classes:
* ArrayIntList

index

0

value

42

17

& Tk ecd IR S

data | next |
front ——| 42

data | next
-3

data | next
17

data | next
9

» They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

12

Redundant client code

bl e e We i Lot BN R o B A e
public static void main(String[] args) {

ArrayIntList listl = new ArrayIntList();
listl.add(18) ;
listl.add(27) ;
listl.add(93) ;
System.out.println(listl) ;
listl.remove(l);
System.out.println(listl) ;

LinkedIntlList 1list?2 = new LinkedIntList();
list2.add (18) ;

list2.add (27) ;

list2.add (93) ;

System.out.println(list2) ;
list2.remove(l) ;
System.out.println(list2);

13

/< —

/ &
An IntList interface

// Represents a list of integers.
pablaseynte e baae s fhgiat
public void add(int value) ;
B e e e e A e R e e I e
public int get (int index) ;
public int indexOf (int value);
public boolean i1sEmpty () ;
ShbY SN I B bW Ve R o S A e pRe [
Dubivievvomdnse b e scav e e
JSAYY S s g b N A T O Y

public class ArrayIntlList implements IntList { ...
public class LinkedIntList implements IntList { ...

14

/———-""

Client code w/ interface

public class ListClient {
b e AN S R e e M (e s M e e e e U e i R e T e
IntList 1listl = new ArraylIntlList () ;
process (listl) ;

Tt lastild st 2v—mewiTankedPnbiaisi)
process (list2) ;

}

pubiiiig i statveivord processtinthiast ast) |
I
Yaetvaddit 27
list.add(93);
System.out.println(list);
list.remove (1) ;
Sy Shemiprt e Rt G aafare

15

—

e

ADTs as interfaces (11.1)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework uses interfaces to describe
ADTs:

Coltleebron Peagus s Man e eis et

* An ADT can be implemented in multiple ways by classes:

A e eael i e implement List
HashSet and TreeSet implement set
LinkedList, ArrayDeque, etc. implement Queue

« They messed up on Stack; there's no stack interface, just a class.

16

—

% Using ADT interfaces

When using Java's built-in collection classes:

» It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

» Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

pubilmevrordvs b el staSE EIng e

17

Why use ADTs?

* Why would we want more than one kind of list, queue,
etc.?

* Answer: Each implementation is more efficient at certain
tasks.

ArrayList is faster for adding/removing at the end;

LinkedList is faster for adding/removing at the front/middle.

Etc.

You choose the optimal implementation for your task, and if
the rest of your code is written to use the ADT interfaces, it
will work.

18

e

The Comparable
Interface

reading: 10.2

—

= .
Binary search and objects

e Can we binarySearch an array of Strings?
Operators like < and > do not work with string objects.
But we do think of strings as having an alphabetical ordering.

* natural ordering: Rules governing the relative placement
of all values of a given type.

e comparison function: Code that, when given two values
A and B of a given type, decides their relative ordering:

A<B, A==B, A>B

20

e

Collections class

Method name

Description

binarySearch (list, value)

returns the index of the given value in
a sorted list (< 0 if not found)

copy (listTo, listFrom)

copies listFrom's elements to listTo

emptyList (),emptyMap (),
emptySet ()

returns a read-only collection of the
given type that has no elements

fil1l (list, value)

sets every element in the list to have
the given value

max (collection), min (collection)

returns largest/smallest element

replaceaAll (list, old, new)

replaces an element value with another

reverse (list)

reverses the order of a list's elements

shuffle (list)

arranges elements into a random order

sort (list)

arranges elements into ascending order

21

—

J—
The compareTo method (10.2)

* The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

Example: in the stringclass, there is a method:

public 1nt compareTo (String other)

e A call of A.compareTo (B) will return:

a value <0 if A comes "before" B in the ordering,
a value >0 if A comes "after" B in the ordering,
0 if A and B are considered "equal” in the ordering.

22

Lo :
Using compareTo

e compareTo can be used as a test in an if statement.

Shrangian =t e ot
Strnig e alsihe
if (a.compareTo(b) < 0) { // true

}

Primitives Objects
T) s Se e lo b ale i Mol i i Gl
A et o 3 HE P - el o e i = Y e ol e A
T ta == rhitaicompareTolb)y == 00
AU R B Y e MEEIH Pl by i s Vot Met b i U
TV alavs=i by 1f (a.compareTo(b) >= 0) {
AV B e e R T S T R e P e

/—”“"

Binary search w/ strings

// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order
public static int binarySearch (String[] a, int target) {
SEA R g i I R
int max = a.length - 1;

while (min <= max) {

N I VI S ST
1f (a[mid] .compareTo (target) < 0) {
Eavagi I e g P el
} else 1if (a[mid] .compareTo(target) > 0) ({
Ma X v mivavie il
Vo A
return mid; // target found
}
}
e D Y B T // target not found

—

// n
compareTo and collections

* You can use an array or list of strings with Java's included
binary search method because it calls compareTo internally.

Storpig e e g N B e e e g e T e ke s
int index = Arrays.binarySearch(a, "dan"); // 3

e Java's TreeSet/Map use compareTo internally for ordering.

Set<String> set = new TreeSet<String>();
For st raing sy gy
set.add(s);

}
S S G S A e

// [al, bob, cari, dan, mike]

25

—

/ =
Ordering our own types

e We cannot binary search or make a TreeSet/Map of
arbitrary types, because Java doesn't know how to order

the elements.

The program compiles but crashes when we run it.

Set<HtmlTag> tags = new TreeSet<HtmlTag> () ;
tagsiaddiinew HEmVTagitbodyl i L riue))y
tags.add (new HtmlTag ("b", false));

Exception in thread "main"
java.lang.ClassCastException

at java.util.TreeSet.add(TreeSet.java:238)

26

2/

Interfaces (9.5)

* interface: A list of methods that a class can promise to
implement.

Inheritance gives you an is-a relationship and code sharing.
« A Lawyer can be treated as an Employee and inherits its code.

Interfaces give you an is-a relationship without code sharing.
« A Rectangle oObject can be treated as a shape but inherits no code.

Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

- "I'm 'certified' as a Shape, because I implement the Shape
interface.

This assures you I know how to compute my area and perimeter."”

28

//Comparable (10.2)

public interface Comparable<E> {
public int compareTo (E other);

}

e A class can implement the comparable interface to define a
natural ordering function for its objects.

* A call to your compareTo method should return:
a value < 0 if the this object comes "before" other one,
a value > 0 if the this object comes "after" other one,
0 if the this object is considered "equal” to other.

29

/ g

J—
Comparable template

public class NAaMe implements Comparable<name>

public int compareTo (nNAaMe other) {

}

30

/———-""

J—
Comparable example

public class Point implements Comparable<Point> ({
private 1nt x;
Prdvate indas

// sort by x and break ties by y
public int compareTo (Point other) ({
TEt obhe iy
ret e
e O s e o
e T
PelEse ey WO Rie ey

Ty o // same x, smaller y
} else 1f (y > other.y) {

e T // same x, larger y
} else {

return 0; // same x and same y

e :
compareTo tricks

e subtraction trick - Subtracting related numeric values
produces the right result for what you want compareTo to
return:

// sort by x and break ties by y
public 1int compareTo (Point other) {

el minilyerasaied
return x - other.x; // different x
} else {
return y - other.y; // same x; compare y
}
}
» The idea:
v e obho e then x - other.x > 0
vl e then x - other.x < O
o if x == other.x, then x - other.x ==

« NOTE: This trick doesn't work for doubles (but see Math.signum)32

// n
compareTo tricks 2

» delegation trick - If your object's fields are comparable
(such as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public 1nt compareTo (Employee other) {
return name.compareTo (other.getName ()) ;

}

* toString trick - If your object's tostring representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
ohby e b e e R e S e A e e e
return toString () .compareTo (other.toString()) ;

}

53

e

Exercises

* Make the HtmlTag class from HTML Validator comparable.

Compare tags by their elements, alphabetically by name.
For the same element, opening tags come before closing tags.

// <body><i>
</i></body>

Set<HtmlTag>

tags.
Lacey
tags.
tags.
Tadioy
Fadion
Daass
Daass

bagss:

add (new
add (new
add (new
add (new
add (new
add (new
add (new
add (new
add (new

tags = new TreeSet<HtmlTag> () ;

b B M B e N R e

S A e S e
HtmlTag ("b", false));
SE A AN R e e R
HtmlTag("b" e
HtmlTag ("b", false));
HtmlTag ("br")) ;

HEmEEae G v Palhsegis

HEmlTeagitbody Yo wtal sayie

Svstemsout printbln(tags)y;
// [, , <body>, </body>,
, <i>, </i>]

L/
L
L)
L
Lf
Lf
i/
Ll
i

<body>

<i>

</i>
</body>

34

/ = n
Exercise solution

public class HtmlTag implements Comparable<HtmlTag> {

// Compares tags by their element ("body" before "head"),
// breaking ties with opening tags before closing tags.
// Returns < 0 for less, 0 for equal, > 0 for greater.
public int compareTo (HtmlTag other) ({
int compare = element.compareTo (other.getElement ()) ;
e el e e e S
// different tags; use String's compareTo result
return compare;

raedaga
// same tag
1f ((1sOpenTag == other.isOpenTag()) {
return 0; // exactly the same kind of tag
} else if (other.isOpenTag()) {
e bR // he=open, I=close; I am after
} else {

return -1; // I=open, he=close; I am before

}

} 35

