
Building Java Programs

Interfaces and Comparable
reading: 9.5 - 9.6, 10.2, 16.4

2

3

Shapes
� Consider the task of writing classes to represent 2D shapes

such as Circle, Rectangle, and Triangle.

� Certain operations are common to all shapes:
� perimeter: distance around the outside of the shape
� area: amount of 2D space occupied by the shape

� Every shape has these, but each computes them differently.

4

Shape area and perimeter
� Circle (as defined by radius r):

area = ½ π r 2

perimeter = 2 π r

� Rectangle (as defined by width w and height h):
area = w h
perimeter = 2w + 2h

� Triangle (as defined by side lengths a, b, and c)
area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)
perimeter = a + b + c

r

w

h

a
b

c

5

Common behavior
� Suppose we have 3 classes Circle, Rectangle, Triangle.

� Each has the methods perimeter and area.

� We'd like our client code to be able to treat different kinds
of shapes in the same way:
� Write a method that prints any shape's area and perimeter.
� Create an array to hold a mixture of the various shape objects.
� Write a method that could return a rectangle, a circle, a

triangle, or any other kind of shape.
� Make a DrawingPanel display many shapes on screen.

6

Interfaces (9.5)
� interface: A list of methods that a class can promise to

implement.

� Inheritance gives you an is-a relationship and code sharing.
� A Lawyer can be treated as an Employee and inherits its code.

� Interfaces give you an is-a relationship without code sharing.
� A Rectangle object can be treated as a Shape but inherits no code.

� Analogous to non-programming idea of roles or certifications:
� "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
� "I'm 'certified' as a Shape, because I implement the Shape

interface.
This assures you I know how to compute my area and perimeter."

7

Interface syntax
public interface name {

public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:

// Describes features common to all shapes.
public interface Shape {

public double area();
public double perimeter();

}

8

Shape interface
// Describes features common to all shapes.
public interface Shape {

public double area();
public double perimeter();

}

� Saved as Shape.java

� abstract method: A header without an implementation.
� The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.

9

Implementing an interface
public class name implements interface {

...
}

� A class can declare that it "implements" an interface.
� The class must contain each method in that interface.

public class Bicycle implements Vehicle {
...

}

(Otherwise it will fail to compile.)
Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape
public class Banana implements Shape {

^

10

Interface requirements
public class Banana implements Shape {

// haha, no methods! pwned
}

� If we write a class that claims to be a Shape but doesn't
implement area and perimeter methods, it will not
compile.

Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape
public class Banana implements Shape {

^

11

Interfaces + polymorphism
� Interfaces benefit the client code author the most.

� They allow polymorphism.
(the same code can work with different types of objects)

public static void printInfo(Shape s) {
System.out.println("The shape: " + s);
System.out.println("area : " + s.area());
System.out.println("perim: " + s.perimeter());
System.out.println();

}
...
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);

12

Linked vs. array lists
� We have implemented two collection classes:

� ArrayIntList

� LinkedIntList

� They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

index 0 1 2 3
value 42 -3 17 9

front
data next
42

data next
-3

data next
17

data next
9

13

Redundant client code
public class ListClient {

public static void main(String[] args) {
ArrayIntList list1 = new ArrayIntList();
list1.add(18);
list1.add(27);
list1.add(93);
System.out.println(list1);
list1.remove(1);
System.out.println(list1);

LinkedIntList list2 = new LinkedIntList();
list2.add(18);
list2.add(27);
list2.add(93);
System.out.println(list2);
list2.remove(1);
System.out.println(list2);

}
}

14

An IntList interface
// Represents a list of integers.
public interface IntList {

public void add(int value);
public void add(int index, int value);
public int get(int index);
public int indexOf(int value);
public boolean isEmpty();
public int remove(int index);
public void set(int index, int value);
public int size();

}

public class ArrayIntList implements IntList { ...
public class LinkedIntList implements IntList { ...

15

Client code w/ interface
public class ListClient {

public static void main(String[] args) {
IntList list1 = new ArrayIntList();
process(list1);

IntList list2 = new LinkedIntList();
process(list2);

}

public static void process(IntList list) {
list.add(18);
list.add(27);
list.add(93);
System.out.println(list);
list.remove(1);
System.out.println(list);

}
}

16

ADTs as interfaces (11.1)
� abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
� Describes what a collection does, not how it does it.

� Java's collection framework uses interfaces to describe
ADTs:
� Collection, Deque, List, Map, Queue, Set

� An ADT can be implemented in multiple ways by classes:
� ArrayList and LinkedList implement List
� HashSet and TreeSet implement Set
� LinkedList , ArrayDeque, etc. implement Queue

� They messed up on Stack; there's no Stack interface, just a class.

17

Using ADT interfaces
When using Java's built-in collection classes:

� It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

� Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

public void stutter(List<String> list) {

...

}

18

Why use ADTs?
� Why would we want more than one kind of list, queue,

etc.?

� Answer: Each implementation is more efficient at certain
tasks.
� ArrayList is faster for adding/removing at the end;
LinkedList is faster for adding/removing at the front/middle.
Etc.

� You choose the optimal implementation for your task, and if
the rest of your code is written to use the ADT interfaces, it
will work.

The Comparable
Interface

reading: 10.2

20

Binary search and objects
� Can we binarySearch an array of Strings?

� Operators like < and > do not work with String objects.
� But we do think of strings as having an alphabetical ordering.

� natural ordering: Rules governing the relative placement
of all values of a given type.

� comparison function: Code that, when given two values
A and B of a given type, decides their relative ordering:

� A < B, A == B, A > B

21

Collections class
Method name Description

binarySearch(list, value) returns the index of the given value in
a sorted list (< 0 if not found)

copy(listTo, listFrom) copies listFrom's elements to listTo
emptyList(), emptyMap(),
emptySet()

returns a read-only collection of the
given type that has no elements

fill(list, value) sets every element in the list to have
the given value

max(collection), min(collection) returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another
reverse(list) reverses the order of a list's elements
shuffle(list) arranges elements into a random order
sort(list) arranges elements into ascending order

22

The compareTo method (10.2)

� The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

� Example: in the String class, there is a method:
public int compareTo(String other)

� A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B in the ordering,
a value > 0 if A comes "after" B in the ordering,
0 if A and B are considered "equal" in the ordering.

23

Using compareTo
� compareTo can be used as a test in an if statement.

String a = "alice";
String b = "bob";
if (a.compareTo(b) < 0) { // true

...
}

Primitives Objects
if (a < b) { ... if (a.compareTo(b) < 0) { ...

if (a <= b) { ... if (a.compareTo(b) <= 0) { ...

if (a == b) { ... if (a.compareTo(b) == 0) { ...

if (a != b) { ... if (a.compareTo(b) != 0) { ...

if (a >= b) { ... if (a.compareTo(b) >= 0) { ...

if (a > b) { ... if (a.compareTo(b) > 0) { ...

24

Binary search w/ strings
// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(String[] a, int target) {

int min = 0;
int max = a.length - 1;

while (min <= max) {
int mid = (min + max) / 2;
if (a[mid].compareTo(target) < 0) {

min = mid + 1;
} else if (a[mid].compareTo(target) > 0) {

max = mid - 1;
} else {

return mid; // target found
}

}

return -(min + 1); // target not found
}

25

compareTo and collections
� You can use an array or list of strings with Java's included

binary search method because it calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};
int index = Arrays.binarySearch(a, "dan"); // 3

� Java's TreeSet/Map use compareTo internally for ordering.
Set<String> set = new TreeSet<String>();
for (String s : a) {

set.add(s);
}
System.out.println(s);
// [al, bob, cari, dan, mike]

26

Ordering our own types
� We cannot binary search or make a TreeSet/Map of

arbitrary types, because Java doesn't know how to order
the elements.

� The program compiles but crashes when we run it.

Set<HtmlTag> tags = new TreeSet<HtmlTag>();
tags.add(new HtmlTag("body", true));
tags.add(new HtmlTag("b", false));
...

Exception in thread "main"
java.lang.ClassCastException

at java.util.TreeSet.add(TreeSet.java:238)

27

28

Interfaces (9.5)
� interface: A list of methods that a class can promise to

implement.

� Inheritance gives you an is-a relationship and code sharing.
� A Lawyer can be treated as an Employee and inherits its code.

� Interfaces give you an is-a relationship without code sharing.
� A Rectangle object can be treated as a Shape but inherits no code.

� Analogous to non-programming idea of roles or certifications:
� "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
� "I'm 'certified' as a Shape, because I implement the Shape

interface.
This assures you I know how to compute my area and perimeter."

29

Comparable (10.2)
public interface Comparable<E> {

public int compareTo(E other);
}

� A class can implement the Comparable interface to define a
natural ordering function for its objects.

� A call to your compareTo method should return:
a value < 0 if the this object comes "before" other one,
a value > 0 if the this object comes "after" other one,
0 if the this object is considered "equal" to other.

30

Comparable template
public class name implements Comparable<name> {

...

public int compareTo(name other) {
...

}
}

31

Comparable example
public class Point implements Comparable<Point> {

private int x;
private int y;
...

// sort by x and break ties by y
public int compareTo(Point other) {

if (x < other.x) {
return -1;

} else if (x > other.x) {
return 1;

} else if (y < other.y) {
return -1; // same x, smaller y

} else if (y > other.y) {
return 1; // same x, larger y

} else {
return 0; // same x and same y

}
}

}

32

compareTo tricks
� subtraction trick - Subtracting related numeric values

produces the right result for what you want compareTo to
return:
// sort by x and break ties by y
public int compareTo(Point other) {

if (x != other.x) {
return x - other.x; // different x

} else {
return y - other.y; // same x; compare y

}
}

� The idea:
� if x > other.x, then x - other.x > 0

� if x < other.x, then x - other.x < 0
� if x == other.x, then x - other.x == 0

� NOTE: This trick doesn't work for doubles (but see Math.signum)

33

compareTo tricks 2
� delegation trick - If your object's fields are comparable

(such as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public int compareTo(Employee other) {

return name.compareTo(other.getName());
}

� toString trick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo(Date other) {

return toString().compareTo(other.toString());
}

34

Exercises
� Make the HtmlTag class from HTML Validator comparable.

� Compare tags by their elements, alphabetically by name.
� For the same element, opening tags come before closing tags.

// <body><i>
</i></body>
Set<HtmlTag> tags = new TreeSet<HtmlTag>();
tags.add(new HtmlTag("body", true)); // <body>
tags.add(new HtmlTag("b", true)); //
tags.add(new HtmlTag("b", false)); //
tags.add(new HtmlTag("i", true)); // <i>
tags.add(new HtmlTag("b", true)); //
tags.add(new HtmlTag("b", false)); //
tags.add(new HtmlTag("br")); //

tags.add(new HtmlTag("i", false)); // </i>
tags.add(new HtmlTag("body", false)); // </body>
System.out.println(tags);
// [, , <body>, </body>,
, <i>, </i>]

35

Exercise solution
public class HtmlTag implements Comparable<HtmlTag> {

...
// Compares tags by their element ("body" before "head"),
// breaking ties with opening tags before closing tags.
// Returns < 0 for less, 0 for equal, > 0 for greater.
public int compareTo(HtmlTag other) {

int compare = element.compareTo(other.getElement());
if (compare != 0) {

// different tags; use String's compareTo result
return compare;

} else {
// same tag
if ((isOpenTag == other.isOpenTag()) {

return 0; // exactly the same kind of tag
} else if (other.isOpenTag()) {

return 1; // he=open, I=close; I am after
} else {

return -1; // I=open, he=close; I am before
}

}
}

}

