Building Java Programs

Chapter 11
Sets and Maps

reading: 11.2 - 11.3

/ =
Exercise

 Write a program that counts the number of unique words in
a large text file (say, Moby Dick or the King James Bible).

Store the words in a collection and report the # of unique
words.

Once you've created this collection, allow the user to search it
to see whether various words appear in the text file.

* What collection is appropriate for this problem?

* set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

» add, remove, search (contains)

» We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains ("to") true

v

v

set.contains ("be") false

set

/ = =
Set implementation

* in Java, sets are represented by set type in java.util

* Set is implemented by HashSet and TreeSet classes

HashSet: implemented using a "hash table" array;

very fast: O(1) for all operations
elements are stored in unpredictable order

TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

LinkedHashSet: O(1) but stores in order of insertion;
slightly slower than Hashset because of extra info stored

e
Set methods
e e e i I e e o U B R e AR i

Set<Integer> set = new TreeSet<Integer>(); // empty
Set<String> set2 = new HashSet<String>(list)

can construct an empty set, or one based on a given collection

add (value) adds the given value to the set

contains (value) | returns true if the given value is found in this set
remove (value) removes the given value from the set

clesrit) removes all elements of the set

size () returns the number of elements in list

isEmpty () returns true if the set's size is 0

tost e ingi) returns a string suchas "[3, 42, -7, 15]"

—

J—
The "for each” loop (7.1)

for (type name : collection) ¢{
statements;

* Provides a clean syntax for looping over the elements of a
Set, List, array, or other collection

Set<Double> grades = new HashSet<Double>() ;

for (double grade : grades) {
sy ebenvemvsbrinblnivhstdent iswarradasi s pvgracieys

}

needed because sets have no indexes; can't get element i

.—/

/ =
Exercise

* Write a program to count the number of occurrences of
each unique word in a large text file (e.g. Moby Dick).

Allow the user to type a word and report how many times that
word appeared in the book.

Report all words that appeared in the book at least 500 times,
in alphabetical order.

* What collection is appropriate for this problem?

Maps (11.3)

e map: Holds a set of unique keys and a collection of values,
where each key is associated with one value.

a.k.a. "dictionary", "associative array", "hash"

e basic map operations: Eve VALUES
put(key, value): Adds a 2 o
mapping from a key to or 1220
a value. May 100.0
Jun 69.9

get(key): Retrieves the P o v] 373
value mapped to the key. e =
Nov 73.2
remove(key). Removes e 1109

the given key and its

mapped value.
myMap.get ("Aug") returns 37.3

10

A N A M N A W R A N A M M AN R R A R R A A R A RN AR LA Ny

Maps (11.

e map: Holds a set of key-value pairs, where each key is
unique

a.k.a. "dictionary", "associative array", "hash"

key

" at"

map.get ("the")

value

22

key

" you "

A 4

key key

14 "me"

o

key
mw the "

value

56

11

e

Maps and tallying

* a map can be thought of as generalization of a tallying

array

the "index" (key) doesn't have to be an int

count digits: 22092310907

»

// (C)hocolate, (V)anilla,
N N N N N R O (D N S N S

count votes:

key IICII IIVII IISII
value | 16 | 14 | 3

index 0 1 2 345 6 7 89

value

3

1

3

0

0

0

0

1

0

2

(S) trawberry

12

—

,;”””’/;’——' . -
Map implementation

e in Java, maps are represented by Map type in java.util

* Map is implemented by the HashMap and TreeMap classes

HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

* A map requires 2 type params: one for keys, one for
values.

// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap<String, Integer> (),

13

//
Map methods
put (key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one
get (key) returns the value mapped to the given key (null if not found)

containsKey (key)

returns true if the map contains a mapping for the given key

remove (key)

removes any existing mapping for the given key

clear () removes all key/value pairs from the map

size () returns the number of key/value pairs in the map
isEmpty () returns true if the map's size is 0

tostringt) returns a string such as "{a=90, d=60, c=70}"
Reyoet) returns a set of all keys in the map

values () returns a collection of all values in the map

putAll (map)

adds all key/value pairs from the given map to this map

equals (map)

returns true if given map has the same mappings as this one

14

/ =
Using maps

* A map allows you to get from one half of a pair to the
other.

» Remembers one piece of information about every index (key).

// key value
B R A A R O st SR s e M Y M

» Later, we can supply only the key and get back the related
value:

Allows us to ask: What is Suzy's phone number?

e sy

[
»

WO ean a1

15

J—
keySet and values

* keySet method returns a set of all keys in the map

can loop over the keys in a foreach loop
can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>():;
Ve leicema SRe i BAVIR aishaa it

ages.put ("Geneva", 2); // ages.keySet() returns Set<String>
ages.put ("Vicki", 57);

for (String name : ages.keySet()) ({ // Geneva -> 2
int age = ages.get (name) ; // Marty -> 19
System.out.println(name + " -> " + age); // Vicki -> 57

}

* values method returns a collection of all values in the map
can loop over the values in a foreach loop
no easy way to get from a value to its associated key(s)

16

