
Building Java Programs

Chapter 16
Linked Nodes

reading: 16.1

2

3

Recall: stacks and queues
� stack: retrieves elements in reverse order as added
� queue: retrieves elements in same order as added

stack

queue

top 3
2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

4

� Complexity class of various operations on collections:

� Could we build lists differently to optimize other operations?

Collection efficiency

Method ArrayList Stack Queue
add (or push) O(1)
add(index, value) O(N) - -
indexOf O(N) - -
get O(1) - -
remove O(N)
set O(1) - -
size O(1)

Method ArrayList Stack Queue
add (or push) O(1) O(1)
add(index, value) - -
indexOf - -
get - -
remove O(1) O(1)
set - -
size O(1) O(1)

5

Array vs. linked structure
� All collections in this course use one of the following:

� an array of all elements
� examples: ArrayList, Stack, HashSet, HashMap

� linked objects storing a value and references to other(s)
� examples: LinkedList, TreeSet, TreeMap

� First, we will learn how to create a linked list.
� To understand linked lists, we must understand

references.

42 -3 17 9

front 42 -3 17 9 null

6

Memory for a List
� Array (contiguous in memory)

� Spread in memory

42 -3 17 9

42 9 -3 17

7

8

A list node class
public class ListNode {

int data;
ListNode next;

}

� Each list node object stores:
� one piece of integer data
� a reference to another list node

� ListNodes can be "linked" into chains to store a list of
values:

data next
42

data next
-3

data next
17

data next
9

end

9

References to same type
� What would happen if we had a class that declared one of

its own type as a field?

public class Strange {
private String name;
private Strange other;

}

� Will this compile?
� If so, what is the behavior of the other field? What can it do?
� If not, why not? What is the error and the reasoning behind it?

10

List node client example
public class ConstructList1 {

public static void main(String[] args) {
ListNode list = new ListNode();
list.data = 42;
list.next = new ListNode();
list.next.data = -3;
list.next.next = new ListNode();
list.next.next.data = 17;
list.next.next.next = null;
System.out.println(list.data + " " + list.next.data

+ " " + list.next.next.data);
// 42 -3 17

}
}

data next
42

data next
-3

data next
17 nulllist

11

List node w/ constructor
public class ListNode {

int data;
ListNode next;

public ListNode(int data) {
this.data = data;
this.next = null;

}

public ListNode(int data, ListNode next) {
this.data = data;
this.next = next;

}
}

� Exercise: Modify the previous client to use these constructors.

12

Linked node problem 1
� What set of statements turns this picture:

� Into this?

data next
10

data next
20

list

data next
10

data next
20

list data next
30

13

References vs. objects
variable = value;

a variable (left side of =) is an arrow (the base of an arrow)
a value (right side of =) is an object (a box; what an arrow

points at)

� For the list at right:

� a.next = value;
means to adjust where points

� variable = a.next;
means to make variable point at

data next
10

a data next
201

2

1

2

14

Reassigning references
� when you say:

� a.next = b.next;

� you are saying:
� "Make variable a.next refer to the same value as b.next."
� Or, "Make a.next point to the same place that b.next points."

data next
10

a data next
20

data next
30

b data next
40

15

Linked node problem 2
� What set of statements turns this picture:

� Into this?

data next
10

data next
20

list

data next
30

data next
10

list data next
20

16

Linked node problem 3
� What set of statements turns this picture:

� Into this?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

17

Linked node problem 3
� How many ListNode variables?

� Which variables change?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

1

2 3

5 6

4

5

4

3

18

Linked node problem 3
� How many ListNode variables?

� Which variables change?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

1

2 3

5 6

4

5

4

3

list1.next.next = list2

19

Linked node problem 3
� How many ListNode variables?

� Which variables change?

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

1

2 3

5 6

4

5

4

3

list1.next.next = list2
list2 = list2.next

20

� How many ListNode variables?

� Which variables change?

Linked node problem 3

data next
10

data next
20

list1

data next
30

data next
40

list2

data next
10

data next
20

list1

data next
40

list2

data next
30

1

2 3

5 6

4

5

4

3

list1.next.next = list2
list2 = list2.next

list1.next.next.next
= null

21

References vs. objects
variable = value;

a variable (left side of =) is an arrow (the base of an arrow)
a value (right side of =) is an object (a box; what an arrow

points at)

� For the list at right:

� a.next = value;
means to adjust where points

� variable = a.next;
means to make variable point at

data next
10

a data next
201

2

1

2

22

data next
10

data next
20

list1 data next
30

current

23

Linked node question
� Suppose we have a long chain of list nodes:

� We don't know exactly how long the chain is.

� How would we print the data values in all the nodes?

data next
10

data next
990

list
...

data next
20

24

Algorithm pseudocode
� Start at the front of the list.
� While (there are more nodes to print):

� Print the current node's data.
� Go to the next node.

� How do we walk through the nodes of the list?

list = list.next; // is this a good idea?

data next
10

data next
990

list
...

data next
20

25

Traversing a list?
� One (bad) way to print every value in the list:

while (list != null) {
System.out.println(list.data);
list = list.next; // move to next node

}

� What's wrong with this approach?
� (It loses the linked list as it prints it!)

data next
10

data next
990

list
...

data next
20

26

A current reference
� Don't change list. Make another variable, and change it.

� A ListNode variable is NOT a ListNode object

ListNode current = list;

� What happens to the picture above when we write:

current = current.next;

data next
10

data next
990

list
...

data next
20

current

27

Traversing a list correctly
� The correct way to print every value in the list:

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next; // move to next node

}

� Changing current does not damage the list.

data next
10

data next
990

list
...

data next
20

28

Linked List vs. Array
� Print list values:

ListNode list= ...;

ListNode current = list;
while (current != null) {

System.out.println(current.data);
current = current.next;

}

� Similar to array code:

int[] a = ...;

int i = 0;
while (i < a.length) {

System.out.println(a[i]);
i++;

}

Description Array Code Linked List Code
Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i++; current = current.next;

29

Linked node problem 4
� What set of statements turns this picture:

� Into this?

data next
10

data next
990

list
...

data next
10

data next
990

list
...

data next
1000

30

Arrays vs. linked lists
� Array advantages

� Random access: can quickly retrieve any value

� Array disadvantages
� Adding/removing in middle is O(n)
� Expanding requires creating a new array and copying elements

� Linked list advantages
� Adding/removing in middle is O(1)
� Expanding is O(1) (just add a node)

� Linked list disadvantages
� Sequential access: can't directly retrieve any value

