
Building Java Programs

Chapter 16
References and linked nodes

reading: 16.1

2

3

Value semantics
� value semantics: Behavior where values are copied

when assigned, passed as parameters, or returned.

� All primitive types in Java use value semantics.
� When one variable is assigned to another, its value is copied.
� Modifying the value of one variable does not affect others.

int x = 5;
int y = x; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

4

Reference semantics (objects)
� reference semantics: Behavior where variables actually

store the address of an object in memory.

� When one variable is assigned to another, the object is
not copied; both variables refer to the same object.

� Modifying the value of one variable will affect others.

int[] a1 = {4, 15, 8};
int[] a2 = a1; // refer to same array as
a1
a2[0] = 7;
System.out.println(Arrays.toString(a1)); // [7, 15,
8]

index 0 1 2

value 4 15 8

index 0 1 2

value 7 15 8

a1 memory

a2

5

References and objects
� Arrays and objects use reference semantics. Why?

� efficiency. Copying large objects slows down a program.
� sharing. It's useful to share an object's data among

methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window
panel2.setBackground(Color.CYAN);

panel1

panel2

6

cats1

cats2

cat[] cats2 = cats1;

cat[] cats1 = {🐱 , 🐱 , 🐱 , 🐱 };

7

dogs1

dogs2

dog[] dogs2 = dogs1;

dog[] dogs1 = {🐶 , 🐶 , 🐶 };

8

Value/Reference Semantics
� Variables of primitive types store values directly:

� Values are copied from one variable to another:
cats = age;

� Variables of object types store references to memory:

� References are copied from one variable to another:
scores = grades;

index 0 1 2

value 89 78 93

age 20 cats 3

age 20 cats 20

grades

scores

9

Objects as parameters
� When an object is passed as a parameter, the object is

not copied. The parameter refers to the same object.
� If the parameter is modified, it will affect the original object.

public static void main(String[] args) {
DrawingPanel window = new DrawingPanel(80, 50);
window.setBackground(Color.YELLOW);
example(window);

}

public static void example(DrawingPanel panel) {
panel.setBackground(Color.CYAN);
...

} panel

windo
w

10

Arrays pass by reference
� Arrays are passed as parameters by reference.

� Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] iq = {126, 167, 95};
increase(iq);
System.out.println(Arrays.toString(iq));

}

public static void increase(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

� Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190a

iq

11

References as fields
� Objects can store references to other objects as fields.

Example: Homework 2 (HTML Validator)
� HtmlValidator stores a reference to a Queue
� the Queue stores many references to HtmlTag objects
� each HtmlTag object stores a reference to its element String

private Queue<HtmlTag> tags;
...HtmlValidator

back.........frontQueue

private String element;
...

HtmlTag

private String element;
...

HtmlTag

lmthString ydobString

12

Null references
� null : A value that does not refer to any object.

� The elements of an array of objects are initialized to null.
String[] words = new String[5];

� not the same as the empty string "" or the string "null"
� Why does Java have null ? What is it used for?

index 0 1 2 3 4

value null null null null nullwords

13

Null references
� Unset reference fields of an object are initialized to null.
public class Student {

String name;
int id;

}

Student student = new Student();

name null

student id 0

14

Things you can do w/ null
� store null in a variable or an array element

String s = null;
words[2] = null;

� print a null reference
System.out.println(student.name); // null

� ask whether a variable or array element is null
if (student.name == null) { ... // true

� pass null as a parameter to a method
� some methods don't like null parameters and throw

exceptions

� return null from a method (often to indicate failure)
return null;

15

Dereferencing
� dereference: To access data or methods of an object.

� Done with the dot notation, such as s.length()
� When you use a . after an object variable, Java goes to the

memory for that object and looks up the field/method
requested.

Student student = new Student();
student.name = "Stuart";
String s = student.name.toUpperCase();

name null
student

id 0

'S' 't' 'u' 'a' 'r' 't'

Student String

public int indexOf(String s) {...}
public int length() {...}
public String toUpperCase() {...}

16

Null pointer exception
� It is illegal to dereference null (it causes an exception).

� null does not refer to any object; it has no methods or data.

Student student = new Student();
String s = student.name.toUpperCase(); // ERROR

Output:
Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

name null
student

id 0

17

Recall: stacks and queues
� stack: retrieves elements in reverse order as added
� queue: retrieves elements in same order as added

stack

queue

top 3
2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

18

� Complexity class of various operations on collections:

� Could we build lists differently to optimize other operations?

Collection efficiency

Method ArrayList Stack Queue
add (or push) O(1)
add(index, value) O(N) - -
indexOf O(N) - -
get O(1) - -
remove O(N)
set O(1) - -
size O(1)

Method ArrayList Stack Queue
add (or push) O(1) O(1)
add(index, value) - -
indexOf - -
get - -
remove O(1) O(1)
set - -
size O(1) O(1)

19

Array vs. linked structure
� All collections in this course use one of the following:

� an array of all elements
� examples: ArrayList, Stack, HashSet, HashMap

� linked objects storing a value and references to other(s)
� examples: LinkedList, TreeSet, TreeMap

� First, we will learn how to create a linked list.
� To understand linked lists, we must understand

references.

42 -3 17 9

front 42 -3 17 9 null

20

Memory for a List
� Array (contiguous in memory)

� Spread in memory

42 -3 17 9

42 9 -3 17

21

22

23

References to same type
� What would happen if we had a class that declared one of

its own type as a field?

public class Strange {
private String name;
private Strange other;

}

� Will this compile?
� If so, what is the behavior of the other field? What can it do?
� If not, why not? What is the error and the reasoning behind it?

24

A list node class
public class ListNode {

int data;
ListNode next;

}

� Each list node object stores:
� one piece of integer data
� a reference to another list node

� ListNodes can be "linked" into chains to store a list of
values:

data next
42

data next
-3

data next
17

data next
9

end

25

Arrays vs. linked lists
� Array advantages

� Random access: can quickly retrieve any value

� Array disadvantages
� Adding/removing in middle is O(n)
� Expanding requires creating a new array and copying elements

� Linked list advantages
� Adding/removing in middle is O(1)
� Expanding is O(1) (just add a node)

� Linked list disadvantages
� Sequential access: can't directly retrieve any value

