
Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

2

3

Tips for testing
� You cannot test every possible input, parameter value, etc.

� Think of a limited set of tests likely to expose bugs.

� Think about boundary cases
� Positive; zero; negative numbers
� Right at the edge of an array or collection's size

� Think about empty cases and error cases
� 0, -1, null; an empty list or array

� test behavior in combination
� Maybe add usually works, but fails after you call remove
� Make multiple calls; maybe size fails the second time only

4

Searching methods
� Implement the following methods:

� indexOf – returns first index of element, or -1 if not found
� contains - returns true if the list contains the given int value

� Why do we need isEmpty and contains when we already
have indexOf and size ?
� Adds convenience to the client of our class:

// less elegant // more elegant
if (myList.size() == 0) { if (myList.isEmpty()) {
if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

5

Sequential search
� sequential search: Locates a target value in an array /

list by examining each element from start to finish. Used in
indexOf.

� How many elements will it need to examine?

� Example: Searching the array below for the value 42:

� The array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

6

Binary search (13.1)
� binary search: Locates a target value in a sorted array or

list by successively eliminating half of the array from
consideration.

� How many elements will it need to examine?

� Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

7

Arrays.binarySearch
// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

� The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.
� You can search the entire array, or just a range of indexes

(useful for "unfilled" arrays such as the one in ArrayIntList)

8

Using binarySearch
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};

int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

� binarySearch returns the index where the value is found

� if the value is not found, binarySearch returns:
-(insertionPoint + 1)

• where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

• To insert the value into the array, negate insertionPoint+ 1

int indexToInsert21 = -(index2 + 1); // 6

9

Runtime Efficiency (13.2)
� How much better is binary search than sequential search?

� efficiency: measure of computing resources used by code.
� can be relative to speed (time), memory (space), etc.
� most commonly refers to run time

� Assume the following:
� Any single Java statement takes same amount of time to run.
� A method call's runtime is measured by the total of the

statements inside the method's body.
� A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

10

Efficiency examples
statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
statement4;

}

for (int i = 1; i <= N; i++) {
statement5;
statement6;
statement7;

}

3

N

3N

4N + 3

11

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
statement1;

}
}

for (int i = 1; i <= N; i++) {
statement2;
statement3;
statement4;
statement5;

}

� How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

12

Algorithm growth rates (13.2)
� We measure runtime in proportion to the input data size, N.

� growth rate: Change in runtime as N changes.

� Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.
� Consider the runtime when N is extremely large .

� We ignore constants like 25 because they are tiny next to N.
� The highest-order term (N3) dominates the overall runtime.

� We say that this algorithm runs "on the order of" N3.
� or O(N3) for short ("Big-Oh of N cubed")

13

Complexity classes
� complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
...
exponential O(2N) multiplies drastically 5 * 1061 years

14

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

15

Sequential search
� What is its complexity class?

public int indexOf(int value) {
for (int i = 0; i < size; i++) {

if (elementData[i] == value) {
return i;

}
}
return -1; // not found

}

� On average, "only" N/2 elements are visited
� 1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

16

Collection efficiency

Method ArrayList
add

add(index, value)
indexOf

get

remove

set

size

� Efficiency of our ArrayIntList or Java's ArrayList:

Method ArrayList
add O(1)
add(index, value) O(N)
indexOf O(N)
get O(1)
remove O(N)
set O(1)
size O(1)

17

Binary search
� binary search successively eliminates half of the

elements.

� Algorithm: Examine the middle element of the array.
� If it is too big, eliminate the right half of the array and repeat.
� If it is too small, eliminate the left half of the array and repeat.
� Else it is the value we're searching for, so stop.

� Which indexes does the algorithm examine to find value 42?
� What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

18

Binary search runtime
� For an array of size N, it eliminates ½ until 1 element

remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

� How many divisions does it take?

� Think of it from the other direction:
� How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
� Call this number of multiplications "x".

2x= N
x = log2 N

� Binary search is in the logarithmic complexity class.

19

Range algorithm
What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

20

Range algorithm
What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

21

Range algorithm 2
The last algorithm is O(N2). A slightly better version:

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = i + 1; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

22

Range algorithm 3
This final version is O(N). It runs MUCH faster:

// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int max = numbers[0]; // find max/min values
int min = max;
for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < min) {
min = numbers[i];

}
if (numbers[i] > max) {

max = numbers[i];
}

}
return max - min;

}

23

Runtime of first 2 versions
� Version 1:

� Version 2:

24

Runtime of 3rd version
� Version 3:

25

Max subsequence sum
� Write a method maxSum to find the largest sum of any contiguous

subsequence in an array of integers.
� Easy for all positives: include the whole array.
� What if there are negatives?

� (Let's define the max to be 0 if the array is entirely negative.)

� Ideas for algorithms?

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

Largest sum: 10 + 15 + -2 + 22 = 45

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

26

Algorithm 1 pseudocode
maxSum(a):

max = 0.
for each starting index i:

for each ending index j:
sum = add the elements from a[i] to a[j].
if sum > max,

max = sum.

return max.

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

27

Algorithm 1 code
� What complexity class is this algorithm?

� O(N3). Takes a few seconds to process 2000 elements.

public static int maxSum1(int[] a) {
int max = 0;
for (int i = 0; i < a.length; i++) {

for (int j = i; j < a.length; j++) {
// sum = add the elements from a[i] to a[j].
int sum = 0;
for (int k = i; k <= j; k++) {

sum += a[k];
}
if (sum > max) {

max = sum;
}

}
}
return max;

}

28

Flaws in algorithm 1
� Observation: We are redundantly re-computing sums.

� For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

� Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

� We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

� Let's write an improved version that avoids this flaw.

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

29

Algorithm 2 code
� What complexity class is this algorithm?

� O(N2). Can process tens of thousands of elements per second.

public static int maxSum2(int[] a) {
int max = 0;
for (int i = 0; i < a.length; i++) {

int sum = 0;
for (int j = i; j < a.length; j++) {

sum += a[j];
if (sum > max) {

max = sum;
}

}
}
return max;

}

index 0 1 2 3 4 5 6 7 8
value 2 1 -4 10 15 -2 22 -8 5

30

A clever solution
� Claim 1 : A max range cannot start with a negative-sum range.

� Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

� Together, these observations lead to a very clever algorithm...

i ... j j+1 ... k
< 0 sum(j+1, k)

sum(i, k) < sum(j+1, k)

i ... j-1 j j+1 ... k
≥ 0 < 0 sum(j+1, k)

< 0 sum(j+1, k)
sum(?, k) < sum(j+1, k)

31

Algorithm 3 code
� What complexity class is this algorithm?

� O(N). Handles many millions of elements per second!

public static int maxSum3(int[] a) {
int max = 0;
int sum = 0;
int i = 0;
for (int j = 0; j < a.length; j++) {

if (sum < 0) { // if sum becomes negative, max range
i = j; // cannot start with any of i - j-1
sum = 0; // (Claim 2)

}
sum += a[j];
if (sum > max) {

max = sum;
}

}
return max;

}

