Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

Tips for testing

- You cannot test every possible input, parameter value, etc.
- Think of a limited set of tests likely to expose bugs.
- Think about boundary cases
- Positive; zero; negative numbers
- Right at the edge of an array or collection's size
- Think about empty cases and error cases
- 0, -1, null; an empty list or array
- test behavior in combination
- Maybe add usually works, but fails after you call remove
- Make multiple calls; maybe size fails the second time only

Searching methods

- Implement the following methods:
- indexOf - returns first index of element, or -1 if not found
- contains - returns true if the list contains the given int value
- Why do we need isEmpty and contains when we already have indexOf and size ?
- Adds convenience to the client of our class:

```
// less elegant // more elegant
if (myList.size() == 0) { if (myList.isEmpty()) {
if (myList.indexOf(42) >= 0) { if (myList.contains(42))
```


Sequential search

- sequential search: Locates a target value in an array / list by examining each element from start to finish. Used in indexOf.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

- The array is sorted. Could we take advantage of this?

Binary search (13.1)

- binary search: Locates a target value in a sorted array or list by successively eliminating half of the array from consideration.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

Arrays.binarySearch

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found // Precondition: array is sorted
Arrays.binarySearch (array, value)
// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

- The binarySearch method in the Arrays class searches an array very efficiently if the array is sorted.
- You can search the entire array, or just a range of indexes (useful for "unfilled" arrays such as the one in ArrayIntList)

Using binarySearch


```
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};
int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7
```

- binarySearch returns the index where the value is found
- if the value is not found, binarySearch returns:

$$
\text { - (insertionPoint }+1 \text {) }
$$

- where insertionPoint is the index where the element would have been, if it had been in the array in sorted order.
To insert the value into the array, negate insertionPoint +1
int indexToInsert21 = -(index2 + 1); // 6

Runtime Efficiency (13.2)

- How much better is binary search than sequential search?
- efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- Assume the following:
- Any single Java statement takes same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

Efficiency examples

Efficiency examples 2

```
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}
for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}
- How many statements will execute if \(\mathrm{N}=10\) ? If \(\mathrm{N}=1000\) ?
```


Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N .
- growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4 N} \mathbf{N} \mathbf{+ 2 5 N} \mathbf{N}^{\mathbf{2}}+\mathbf{8 N}+\mathbf{1 7}$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N .
- The highest-order term (N^{3}) dominates the overall runtime.
- We say that this algorithm runs "on the order of" N^{3}.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")

Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5 * 10^{61}$ years

Complexity classes

Sequential search

- What is its complexity class?

```
public int indexOf(int value)
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
        return i;
    }
}
```

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- On average, "only" N/2 elements are visited
- $1 / 2$ is a constant that can be ignored

Collection efficiency

- Efficiency of our ArrayIntList or Java's ArrayList:

Method	ArrayList
add	$\mathrm{O}(1)$
add (index, value)	$\mathrm{O}(\mathrm{N})$
indexOf	$\mathrm{O}(\mathrm{N})$
get	$\mathrm{O}(1)$
remove	$\mathrm{O}(\mathrm{N})$
set	$\mathrm{O}(1)$
size	$\mathrm{O}(1)$

Binary search

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 42?
- What is the runtime complexity class of binary search?

Binary search runtime

- For an array of size N, it eliminates $1 / 2$ until 1 element remains.

$$
N, N / 2, N / 4, N / 8, \ldots, 4,2,1
$$

- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N ?

$$
1,2,4,8, \ldots, N / 4, N / 2, N
$$

- Call this number of multiplications " x ".

$$
\begin{aligned}
& 2^{x}=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic complexity class.

Range algorithm

What complexity class is this algorithm? Can it be improved?

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
        maxDiff = diff;
        }
    }
}
    return diff;
```

\}

Range algorithm

What complexity class is this algorithm? Can it be improved?

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
        maxDiff = diff;
        }
    }
}
    return diff;
```

\}

Range algorithm 2

The last algorithm is $\mathbf{O}\left(\mathbf{N}^{2}\right)$. A slightly better version:

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {
        for (int j = i + 1; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
        maxDiff = diff;
        }
    }
}
return diff;
```

\}

Range algorithm 3

This final version is $\mathbf{O (N)}$. It runs MUCH faster:

```
// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int max = numbers[0]; // find max/min values
    int min = max;
    for (int i = 1; i < numbers.length; i++) {
    if (numbers[i] < min) {
            min = numbers[i];
    }
    if (numbers[i] > max) {
        max = numbers[i];
    }
    }
    return max - min;
}
```


Runtime of first 2 versions

- Version 1:

\mathbf{N}	Runtime (ms)
1000	15
2000	47
4000	203
8000	781
16000	3110
32000	12563
64000	49937

Input size (N)

- Version 2 :

\mathbf{N}	Runtime (ms)
1000	16
2000	16
4000	110
8000	406
16000	1578
32000	6265
64000	25031

Runtime of 3rd version

- Version 3:

\mathbf{N}	Runtime (ms)
1000	0
2000	0
4000	0
8000	0
16000	0
32000	0
64000	0
128000	0
256000	0
512000	0
1 e 6	0
2 e 6	16
4 e 6	31
8 e 6	47
1.67 e 7	94
3.3 e 7	188
6.5 e 7	453
1.3 e 8	797
2.6 e 8	1578

Input size (N)

Max subsequence sum

- Write a method maxsum to find the largest sum of any contiguous subsequence in an array of integers.
- Easy for all positives: include the whole array.
- What if there are negatives?

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Largest sum: $10+15+-2+22=45$

- (Let's define the max to be 0 if the array is entirely negative.)
- Ideas for algorithms?

Algorithm 1 pseudocode

maxSum (a):

$\max =0$.
for each starting index i:
for each ending index j :

```
sum = add the elements from a[i] to a[j].
```

if sum > max,
$\max =s u m$.
return max.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 1 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{\mathbf{3}}\right)$. Takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
        // sum = add the elements from a[i] to a[j].
        int sum = 0;
        for (int k = i; k <= j; k++) {
                        sum += a[k];
        }
        if (sum > max) {
            max = sum;
        }
        }
    }
    return max;
}
```


Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
- For example, we compute the sum between indexes 2 and 5:

$$
a[2]+a[3]+a[4]+a[5]
$$

- Next we compute the sum between indexes 2 and 6:

$$
a[2]+a[3]+a[4]+a[5]+a[6]
$$

- We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
- Let's write an improved version that avoids this flaw.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 2 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{2} \mathbf{)}\right.$. Can process tens of thousands of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
            sum += a[j];
            if (sum > max) {
                        max = sum;
            }
        }
    }
    return max;
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline value & 2 & 1 & -4 & 10 & 15 & -2 & 22 & -8 & 5 \\
\hline
\end{tabular}
```


A clever solution

- Claim 1 : A max range cannot start with a negative-sum range.

- Claim 2 : If $\operatorname{sum}(i, j-1) \geq 0$ and $\operatorname{sum}(i, j)<0$, any max range that ends at $\mathrm{j}+1$ or higher cannot start at any of i through j .

- Together, these observations lead to a very clever algorithm...

Algorithm 3 code

- What complexity class is this algorithm?
- $\mathbf{O}(\mathbf{N})$. Handles many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++)
        if (sum < 0) { // if sum becomes negative, max range
        i = j; // cannot start with any of i - j-1
        sum = 0; // (Claim 2)
    }
    sum += a[j];
    if (sum > max) {
        max = sum;
    }
    }
    return max;
}
```

