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CSE 143, Spring 2017 
Programming Assignment #4: Evil Hangman (40 points) 

Due Thursday, April 27, 2017, 11:30 PM 
thanks to Keith Schwarz from Stanford for this project idea! 

This program focuses on programming with Java Collections classes.  Turn in a file named HangmanManager.java 
from the Homework section of the course web site. You will need support files HangmanMain.java, dictionary.txt, 
and other input files from the Homework section of the course web site; place them in the same folder as your project. 

The Game of Hangman: 
In a normal game of hangman, the computer picks a word that the user is supposed to guess.  The user then guesses 
individual letters until the word is fully discovered.  If you aren’t familiar with the general rules of the game of hangman, 
review its Wikipedia page: http://en.wikipedia.org/wiki/Hangman_(game). 

In our game of hangman, the computer delays picking a word 
until it is forced to.  As a result, the computer is always 
considering a set of words that could be the answer.  In order 
to fool the user into thinking it is playing fairly, the computer 
only considers words with the same letter pattern. 
For example, suppose that the computer knows the words in 
the following dictionary (dictionary2.txt): 
ally beta cool deal else flew good hope ibex 

In a normal game of hangman, the computer would start the 
game by choosing a word to guess.  In our game, the computer 
doesn't yet commit to an answer but instead narrows down its 
set of possible answers as the user makes guesses.  
In the log at left, the user’s first guess is 'e'.  The computer has 
to reveal where the letter 'e' appears but since it hasn't chosen 
an answer, it has several options.  In particular, note that the 
dictionary's words fall into 5 families: 
• ---- is the pattern for [ally, cool, good] 
• -e-- is the pattern for [beta, deal] 
• --e- is the pattern for [flew, ibex] 
• ---e is the pattern for [hope] 
• e--e is the pattern for [else] 

 

The computer could choose to reveal any of these 5 patterns.  
It could use several different strategies for picking the family 
to display.  For this project, your program will always choose 
the largest of the remaining word families.  This will leave the 
computer's options open and increase its chances of winning. 

For the example described above, the computer would pick ----.  This reduces the possible answers it can consider to: 
ally cool good 

Since the computer didn't reveal any letters, it counts this as a wrong guess and decreases the number of guesses left to 6.  
Next, the user guesses the letter 'o'.  The computer has two word families to consider: 
• -oo- is the pattern for [cool, good] 
• ---- is the pattern for [ally] 

It picks the biggest family and reveals the letter 'o' in two places.  This was a correct guess so the user still has 6 guesses 
left.  The computer now has only two possible answers to choose from:  
cool good 

When the user picks 'c', the computer removes 'cool' from its consideration and is now locked into using 'good' as the 
answer.  With a large dictionary, it will take much longer for the computer to have to pick an answer! 

Welcome to the cse143 hangman game. 
 
What length word do you want to use? 4 
How many wrong answers allowed? 7 
 
guesses : 7 
guessed : [] 
current : - - - - 
Your guess? e 
Sorry, there are no e's 
 
guesses : 6 
guessed : [e] 
current : - - - - 
Your guess? o 
Yes, there are 2 o's 
 
guesses : 6 
guessed : [e, o] 
current : - o o - 
Your guess? c 
Sorry, there are no c's 
 
guesses : 5 
guessed : [c, e, o] 
current : - o o - 
Your guess? g 
Yes, there is one g 
 
guesses : 5 
guessed : [c, e, g, o] 
current : g o o - 
Your guess? d 
Yes, there is one d 
 
answer = good 
You beat me  
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Implementation Details: 
You are given a client program HangmanMain.java that does the file processing and user interaction. HangmanMain 
reads a dictionary text file as input and passes its entire contents to you as a list of strings.  You are to write a class called 
HangmanManager that will manage the state of the game.   
Your class should have the following public methods: 

public HangmanManager(List<String> dictionary, int length, int max) 

Your constructor is passed a dictionary of words, a target word length and the maximum number of wrong guesses the 
player is allowed to make.  It should use these values to initialize the state of the game.  The set of words should initially 
be all words from the dictionary that are of the given length.   
You should throw an IllegalArgumentException if length is less than 1 or if max is less than 0. 
 

public Set<String> words() 

The client calls this method to get access to the current set of words being considered by the HangmanManager. 
 

public int guessesLeft() 

The client calls this method to find out how many guesses the player has left. 
   

public SortedSet<Character> guesses() 

The client calls this method to find out the current set of letters that have been guessed by the user. 
 

public String pattern() 

This method should return the current pattern to be displayed for the hangman game taking into account guesses that have 
been made.  Letters that have not yet been guessed should be displayed as a dash and there should be spaces separating the 
letters.  There should be no leading or trailing spaces.   
This method should throw an IllegalStateException if the set of words is empty.  
 

public int record(char guess) 

This is the method that does most of the work by recording the next guess made by the user.  Using this guess, it should 
decide what set of words to use going forward.  It should return the number of occurrences of the guessed letter in the new 
pattern and it should appropriately update the number of guesses left.   
This method should throw an IllegalStateException if the number of guesses left is not at least 1 or if the list of 
words is empty.  It should throw an IllegalArgumentException if the list of words is nonempty and the character 
being guessed was guessed previously. 
Your program should exactly reproduce the format and general behavior demonstrated on the previous page.   

You may assume that the list of words passed to your constructor will be a nonempty list of nonempty strings composed 
entirely of lowercase letters.  You may also assume that all guesses passed to your record method are lowercase letters. 
Notice that the guesses method returns a SortedSet rather than a Set.  SortedSet is a variation of the Set interface 
that requires that the values in the set are to appear in increasing order.  We want this property for the set of guesses so 
that we can show the user the guesses in alphabetical order.  The TreeSet class implements this interface, just as 
TreeSet implements the Set interface.  Also notice that the set returned is a set of Character values.  Recall that type 
parameters must be object types and that Character is the wrapper class for char values.  You can generally manipulate 
the set as if it were a set of simple char values (e.g., calling add or contains with a simple char value). 
The pattern and record methods throw an exception when the list of words is empty.  The only way this can happen is 
if the client requests a word length for which there are no matches in the dictionary.  For example, the dictionary does not 
have any words of length 25. 
For each call on record, you will find all of the possible word families and pick the one that has the most elements. Use 
a Map to associate family patterns with the set of words that have each pattern.  If there is a tie (two of the word families 
are of equal size), you should pick the one that occurs earlier in the Map (i.e., the one whose key comes up first when you 
iterate over the key set).  The set of words representing the biggest family then becomes the dictionary for the next round. 
Use the TreeSet and TreeMap implementations for all of your sets and maps.   
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Development Strategy and Hints: 
The hardest method is record, so write it last.  The friends program from lecture provides several useful ideas. 
Create a simple test client to verify behavior as you add it.  For example, write code to produce a Hangman-style clue 
(with dashes for letters that have not been guessed) and verify that it works in your simple client.  Another good task to 
complete and test in isolation is building the map that associates word family patterns to words in that family. 
HangmanMain has two constants that you will want to change.  The first represents the name of the dictionary file.  By 
default, it reads from dictionary.txt which contains over 127,000 words from the official English Scrabble 
dictionary.  When getting started, change it to dictionary2.txt which contains the 9 words used in the example on the 
first page.  DEBUG is set to false by default.  Set it to true to see the words the computer is still considering as you play.    
Here is a diagram showing the decisions made by the computer in the scenario described on the first page: 

 

Style Guidelines and Grading: 
You should introduce private methods to avoid redundancy and to break up large methods into smaller methods.  In 
particular, you should not have any methods that have more than 20 lines of code in their body (not counting blank 
lines and lines that have just comments or curly braces).  If you have a method that requires more than 20 lines of code, 
then you should break it up into smaller methods.  

You should always use generic structures.  If you make a mistake in specifying type parameters, the Java compiler may 
warn you that you have “unchecked or unsafe operations” in your program.  If you use jGRASP, you may want to change 
your settings to see which line the warning refers to. Go to Settings/Compiler Settings/Workspace/Flags/ 
Args and then uncheck the box next to "Compile" and type in: -Xlint:unchecked 

You should follow general good style guidelines such as: making fields private and avoiding unnecessary fields; 
declaring collection variables using interface types; appropriately using control structures like loops and if/else; 
properly using indentation, good variable names and types; and not having any lines of code longer than 100 characters. 

Comment your code descriptively in your own words at the top of your class, each method, and on complex sections of 
your code.  Comments should explain each method's behavior, parameters, return, pre/post-conditions, and exceptions.  
For reference, our solution is around 147 lines long including comments and blank lines (73 "substantive" lines). 


