
Copyright 2008 by Pearson Education

Building Java Programs

Lecture 1: Java Review

reading: Ch. 1-9

Copyright 2008 by Pearson Education
2

A Java program (1.2)
public class name {

public static void main(String[] args) {

statement;;
statement;;
......
statement;;

}

}

Every executable Java program consists of a class,
that contains a method named main,

that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

Copyright 2008 by Pearson Education
3

System.out.println

A statement that prints a line of output on the console.
pronounced "print-linn"

sometimes called a "println statement" for short

Two ways to use System.out.println :

• System.out.println("text");

Prints the given message as output.

• System.out.println();

Prints a blank line of output.

Copyright 2008 by Pearson Education
4

Static methods (1.4)
static method: A named group of statements.

denotes the structure of a program

eliminates redundancy by code reuse

procedural decomposition:
dividing a problem into methods

Writing a static method is like
adding a new command to Java.

class

method A
statement
statement
statement

method B
statement
statement

method C
statement
statement
statement

Copyright 2008 by Pearson Education
5

Gives your method a name so it can be executed

Syntax:

public static void name() {
statement;
statement;
...
statement;

}

Example:
public static void printWarning() {

System.out.println("This product causes cancer");
System.out.println("in lab rats and humans.");

}

Declaring a method

Copyright 2008 by Pearson Education
6

Calling a method
Executes the method's code

Syntax:

name();

You can call the same method many times if you like.

Example:

printWarning();

Output:

This product causes cancer
in lab rats and humans.

Copyright 2008 by Pearson Education
7

When a method is called, the program's execution...
"jumps" into that method, executing its statements, then
"jumps" back to the point where the method was called.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();

System.out.println("Done with message2.");
}

public static void message1() {
System.out.println("This is message1.");

}

Control flow

Copyright 2008 by Pearson Education
8

Java's primitive types (2.1)
primitive types: 8 simple types for numbers, text, etc.

Java also has object types, which we'll talk about later

Name Description Examples

int integers 42, -3, 0, 926394

double real numbers 3.1, -0.25, 9.4e3

char single text characters 'a', 'X', '?', '\n'

boolean logical values true, false

• Why does Java distinguish integers vs. real numbers?

Copyright 2008 by Pearson Education
9

Expressions
expression: A value or operation that computes a value.

• Examples: 1 + 4 * 5

(7 + 2) * 6 / 3

42

The simplest expression is a literal value.
A complex expression can use operators and parentheses.

Copyright 2008 by Pearson Education
10

Integer division with /
When we divide integers, the quotient is also an integer.

14 / 4 is 3, not 3.5

3 4 52
4) 14 10) 45 27) 1425

12 40 135
2 5 75

54
21

More examples:
32 / 5 is 6
84 / 10 is 8
156 / 100 is 1

Dividing by 0 causes an error when your program runs.

Copyright 2008 by Pearson Education
11

Integer remainder with %
The % operator computes the remainder from integer division.

14 % 4 is 2
218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

Applications of % operator:
Obtain last digit of a number: 230857 % 10 is 7

Obtain last 4 digits: 658236489 % 10000 is 6489

See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?
45 % 6

2 % 2

8 % 20

11 % 0

Copyright 2008 by Pearson Education
12

Precedence
precedence: Order in which operators are evaluated.

Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

But */% have a higher level of precedence than +-

1 + 3 * 4 is 13

6 + 8 / 2 * 3
6 + 4 * 3
6 + 12 is 18

Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

Spacing does not affect order of evaluation
1+3 * 4-2 is 11

Copyright 2008 by Pearson Education
13

String concatenation
string concatenation: Using + between a string and
another value to make a longer string.

"hello" + 42 is "hello42"
1 + "abc" + 2 is "1abc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"

Use + to print a string and an expression's value together.

System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

Copyright 2008 by Pearson Education
14

Variables (2.2)
variable: A piece of the computer's memory that is given a
name and type, and can store a value.

A variable can be declared/initialized in one statement.

Syntax:
type name = value;

double myGPA = 3.95;

int x = (11 % 3) + 12;

14x

3.95myGPA

Copyright 2008 by Pearson Education
15

Type casting
type cast: A conversion from one type to another.

To promote an int into a double to get exact division from /
To truncate a double from a real number to an integer

Syntax:

(type) expression

Examples:
double result = (double) 19 / 5; // 3.8
int result2 = (int) result; // 3
int x = (int) Math.pow(10, 3); // 1000

Copyright 2008 by Pearson Education
16

Increment and decrement
shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version
variable++; variable = variable + 1;

variable--; variable = variable - 1;

int x = 2;
x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;
gpa--; // gpa = gpa - 1;

// gpa now stores 1.5

Copyright 2008 by Pearson Education
17

Modify-and-assign operators
shortcuts to modify a variable's value

Shorthand Equivalent longer version
variable += value; variable = variable + value;
variable -= value; variable = variable - value;
variable *= value; variable = variable * value;
variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

Copyright 2008 by Pearson Education
18

for loops (2.3)
for (initialization; test; update) {

statement;
statement;
...
statement;

}

Perform initialization once.

Repeat the following:
Check if the test is true. If not, stop.

Execute the statements.

Perform the update.

body

header

Copyright 2008 by Pearson Education
19

System.out.print
Prints without moving to a new line

allows you to print partial messages on the same line

int highestTemp = 5;
for (int i = -3; i <= highestTemp / 2; i++) {

System.out.print((i * 1.8 + 32) + " ");
}

• Output:
26.6 28.4 30.2 32.0 33.8 35.6

Copyright 2008 by Pearson Education
20

Nested loops
nested loop: A loop placed inside another loop.

for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= 5; j++) {

System.out.print((i * j) + "\t");
}
System.out.println(); // to end the line

}

Output:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

Statements in the outer loop's body are executed 4 times.
The inner loop prints 5 numbers each time it is run.

Copyright 2008 by Pearson Education
21

Variable scope
scope: The part of a program where a variable exists.

From its declaration to the end of the { } braces
A variable declared in a for loop exists only in that loop.

A variable declared in a method exists only in that method.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here

x's scope

Copyright 2008 by Pearson Education
22

Class constants (2.4)
class constant: A value visible to the whole program.

value can only be set at declaration
value can't be changed while the program is running

Syntax:
public static final type name = value;

name is usually in ALL_UPPER_CASE

Examples:
public static final int DAYS_IN_WEEK = 7;
public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;

Copyright 2008 by Pearson Education
23

Parameters (3.1)
parameter: A value passed to a method by its caller.

Instead of lineOf7, lineOf13, write line to draw any length.
When declaring the method, we will state that it requires a
parameter for the number of stars.

When calling the method, we will specify how many stars to draw.

main line *******
7

line *************13

Copyright 2008 by Pearson Education
24

Passing parameters
Declaration:
public static void name (type name, ..., type name) {

statement(s);
}

Call:
methodName (value, value, ..., value);

Example:
public static void main(String[] args) {

sayPassword(42); // The password is: 42
sayPassword(12345); // The password is: 12345

}

public static void sayPassword(int code) {

System.out.println("The password is: " + code);

}

Copyright 2008 by Pearson Education
25

Java's Math class (3.2)

random double between 0 and 1Math.random()

square rootMath.sqrt(value)

nearest whole numberMath.round(value)

convert degrees to
radians and back

Math.toDegrees(value)
Math.toRadians(value)

rounds downMath.floor(value)

rounds upMath.ceil(value)

sine/cosine/tangent of
an angle in radians

Math.sin(value)
Math.cos(value)
Math.tan(value)

base to the exp powerMath.pow(base, exp)

smaller of two valuesMath.min(value1, value2)

larger of two valuesMath.max(value1, value2)

logarithm, base 10Math.log10(value)

absolute valueMath.abs(value)

DescriptionMethod name

3.1415926...Math.PI

2.7182818...Math.E

DescriptionConstant

Copyright 2008 by Pearson Education
26

Return (3.2)
return: To send out a value as the result of a method.

The opposite of a parameter:
Parameters send information in from the caller to the method.

Return values send information out from a method to its caller.

main

Math.abs(42)-42

Math.round(2.71)

2.71

42

3

Copyright 2008 by Pearson Education
27

Returning a value
public static type name(parameters) {

statements;
...
return expression;

}

Example:
// Returns the slope of the line between the given points.
public static double slope(int x1, int y1, int x2, int y2) {

double dy = y2 - y1;
double dx = x2 - x1;
return dy / dx;

}

Copyright 2008 by Pearson Education
28

Strings (3.3)
string: An object storing a sequence of text characters.

String name = "text";
String name = expression;

Characters of a string are numbered with 0-based indexes:

String name = "P. Diddy";

The first character's index is always 0
The last character's index is 1 less than the string's length
The individual characters are values of type char

index 0 1 2 3 4 5 6 7

char P . D i d d y

Copyright 2008 by Pearson Education
29

String methods

These methods are called using the dot notation:

String gangsta = "Dr. Dre";
System.out.println(gangsta.length()); // 7

Method name Description

indexOf(str) index where the start of the given string
appears in this string (-1 if it is not there)

length() number of characters in this string

substring(index1, index2)

or
substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);
if index2 omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters
toUpperCase() a new string with all uppercase letters

Copyright 2008 by Pearson Education
30

String test methods

String name = console.next();

if (name.startsWith("Dr.")) {

System.out.println("Are you single?");

} else if (name.equalsIgnoreCase("LUMBERG")) {

System.out.println("I need your TPS reports.");

}

whether the given string is found within this onecontains(str)

Method Description
equals(str) whether two strings contain the same characters

equalsIgnoreCase(str) whether two strings contain the same characters,
ignoring upper vs. lower case

startsWith(str) whether one contains other's characters at start

endsWith(str) whether one contains other's characters at end

Copyright 2008 by Pearson Education
31

The equals method
Objects are compared using a method named equals.

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name.equals("Barney")) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

Technically this is a method that returns a value of type boolean,
the type used in logical tests.

Copyright 2008 by Pearson Education
32

Type char (4.4)
char : A primitive type representing single characters.

Each character inside a String is stored as a char value.
Literal char values are surrounded with apostrophe
(single-quote) marks, such as 'a' or '4' or '\n' or '\''

It is legal to have variables, parameters, returns of type char

char letter = 'S';
System.out.println(letter); // S

char values can be concatenated with strings.

char initial = 'P';
System.out.println(initial + " Diddy"); // P Diddy

Copyright 2008 by Pearson Education
33

char vs. String
"h" is a String
'h' is a char (the two behave differently)

String is an object; it contains methods

String s = "h";
s = s.toUpperCase(); // 'H'
int len = s.length(); // 1
char first = s.charAt(0); // 'H'

char is primitive; you can't call methods on it

char c = 'h';
c = c.toUpperCase(); // ERROR: "cannot be dereferenced"

What is s + 1 ? What is c + 1 ?
What is s + s ? What is c + c ?

Copyright 2008 by Pearson Education
34

System.out.printf (4.4)
System.out.printf("format string", parameters);

A format string contains placeholders to insert parameters into it:
%d an integer
%f a real number
%s a string

%8d an integer, 8 characters wide, right-aligned
%-8d an integer, 8 characters wide, left-aligned
%.4f a real number, 4 characters after decimal
%6.2f a real number, 6 characters wide, 2 after decimal

Example:

int x = 3, y = 2;
System.out.printf("(%d, %d)\n", x, y); // (3, 2)
System.out.printf("%4d %4.2f\n", x, y); // 3 2.00

Copyright 2008 by Pearson Education
35

DrawingPanel (3G)
"Canvas" objects that represents windows/drawing surfaces

To create a window:
DrawingPanel name = new DrawingPanel(width, height);

Example:
DrawingPanel panel = new DrawingPanel(300, 200);

The window has nothing on it.
We can draw shapes and lines
on it using another object of
type Graphics.

x+

y+

(0, 0)

Copyright 2008 by Pearson Education
36

Graphics
"Pen" objects that can draw lines and shapes

Access it by calling getGraphics on your DrawingPanel.
Graphics g = panel.getGraphics();

Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2008 by Pearson Education
37

Graphics methods

text with bottom-left at (x, y)g.drawString(text, x, y);

outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawOval(x, y, width, height);

fill largest oval that fits in a box of size
width * height with top-left at (x, y)

g.fillOval(x, y, width, height);

set Graphics to paint any following
shapes in the given color

g.setColor(Color);

fill rectangle of size width * height
with top-left at (x, y)

g.fillRect(x, y, width, height);

outline of rectangle of size
width * height with top-left at (x, y)

g.drawRect(x, y, width, height);

line between points (x1, y1), (x2, y2)g.drawLine(x1, y1, x2, y2);

DescriptionMethod name

Copyright 2008 by Pearson Education
38

Color
Create one using Red-Green-Blue (RGB) values from 0-255

Color name = new Color(red, green, blue);

Example:
Color brown = new Color(192, 128, 64);

Or use a predefined Color class constant (more common)

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:
BLACK, BLUE, CYAN, DARK_GRAY, GRAY,
GREEN, LIGHT_GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, or YELLOW

Copyright 2008 by Pearson Education
39

Scanner (3.3)
System.out

An object with methods named println and print

System.in

not intended to be used directly
We use a second object, from a class Scanner, to help us.

Constructing a Scanner object to read console input:
Scanner name = new Scanner(System.in);

Example:
Scanner console = new Scanner(System.in);

Copyright 2008 by Pearson Education
40

Scanner methods

Each method waits until the user presses Enter.
The value typed is returned.

System.out.print("How old are you? "); // prompt
int age = console.nextInt();
System.out.println("You'll be 40 in " +

(40 - age) + " years.");

prompt: A message telling the user what input to type.

reads a line of user input as a StringnextLine()

reads a token of user input as a doublenextDouble()

reads a token of user input as an intnextInt()

reads a token of user input as a Stringnext()

DescriptionMethod

Copyright 2008 by Pearson Education
41

Testing for valid input (5.3)
Scanner methods to see what the next token will be:

These methods do not consume input;
they just give information about the next token.

Useful to see what input is coming, and to avoid crashes.

returns true if there are any more lines of
input to read (always true for console input)

hasNextLine()

returns true if there is a next token
and it can be read as a double

hasNextDouble()

returns true if there is a next token
and it can be read as an int

hasNextInt()

returns true if there are any more tokens of
input to read (always true for console input)

hasNext()

DescriptionMethod

Copyright 2008 by Pearson Education
42

Cumulative sum (4.1)
A loop that adds the numbers from 1-1000:

int sum = 0;
for (int i = 1; i <= 1000; i++) {

sum = sum + i;
}
System.out.println("The sum is " + sum);

Key idea:

Cumulative sum variables must be declared outside the loops
that update them, so that they will exist after the loop.

Copyright 2008 by Pearson Education
43

if/else (4.2)
Executes one block if a test is true, another if false

if (test) {
statement(s);

} else {
statement(s);

}

Example:
double gpa = console.nextDouble();
if (gpa >= 2.0) {

System.out.println("Welcome to Mars University!");
} else {

System.out.println("Application denied.");
}

Copyright 2008 by Pearson Education
44

Relational expressions
A test in an if is the same as in a for loop.

for (int i = 1; i <= 10; i++) { ...

if (i <= 10) { ...

These are boolean expressions, seen in Ch. 5.

Tests use relational operators:

true5.0 >= 5.0greater than or equal to>=

false126 <= 100less than or equal to<=

true10 > 5greater than>

false10 < 5less than<

true3.2 != 2.5does not equal!=

true1 + 1 == 2equals==

ValueExampleMeaningOperator

Copyright 2008 by Pearson Education
45

Logical operators: &&, ||, !
Conditions can be combined using logical operators:

"Truth tables" for each, used with logical values p and q:

!(2 == 3)

(2 == 3) || (-1 < 5)

(2 == 3) && (-1 < 5)

Example

not

or

and

Description

true!

true||

false&&

ResultOperator

truefalsetruefalse

false

false

true

p && q

false

false

true

q

falsefalse

truetrue

truetrue

p || qp

truefalse

falsetrue

!pp

Copyright 2008 by Pearson Education
46

Type boolean (5.2)
boolean: A logical type whose values are true and false.

A test in an if, for, or while is a boolean expression.

You can create boolean variables, pass boolean parameters,
return boolean values from methods, ...

boolean minor = (age < 21);
boolean expensive = iPhonePrice > 200.00;
boolean iLoveCS = true;

if (minor) {
System.out.println("Can't purchase alcohol!");

}
if (iLoveCS || !expensive) {

System.out.println("Buying an iPhone");
}

Copyright 2008 by Pearson Education
47

De Morgan's Law
De Morgan's Law:
Rules used to negate or reverse boolean expressions.

Useful when you want the opposite of a known boolean test.

Example:

!a && !b

!a || !b

Negated Expression

!(a || b)a || b

!(a && b)a && b

AlternativeOriginal Expression

if (x != 7 || y <= 3) {

...

}

if (x == 7 && y > 3) {

...

}

Negated CodeOriginal Code

Copyright 2008 by Pearson Education
48

if/else Structures

0, 1, or many paths: (independent tests, not exclusive)

if (test) {
statement(s);

}
if (test) {

statement(s);
}
if (test) {

statement(s);
}

0 or 1 path:

if (test) {
statement(s);

} else if (test) {
statement(s);

} else if (test) {
statement(s);

}

Exactly 1 path: (mutually exclusive)

if (test) {
statement(s);

} else if (test) {
statement(s);

} else {
statement(s);

}

Copyright 2008 by Pearson Education
49

Fencepost loops (4.1)
fencepost problem: When we want to repeat two tasks,
one of them n times, another n-1 or n+1 times.

Add a statement outside the loop to place the initial "post."
Also called a fencepost loop or a "loop-and-a-half" solution.

Algorithm template:

place a post.
for (length of fence - 1) {

place some wire.
place a post.

}

Copyright 2008 by Pearson Education
50

Fencepost method solution
Write a method printNumbers that prints each number
from 1 to a given maximum, separated by commas.

For example, the call:
printNumbers(5);

should print:
1, 2, 3, 4, 5

Solution:
public static void printNumbers(int max) {

System.out.print(1);
for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line

}

Copyright 2008 by Pearson Education
51

while loops (5.1)
while loop: Repeatedly executes its
body as long as a logical test is true.

while (test) {
statement(s);

}

Example:
int num = 1; // initialization
while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

OUTPUT:
1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education
52

do/while loops (5.4)
do/while loop: Executes statements repeatedly while a
condition is true, testing it at the end of each repetition.

do {
statement(s);

} while (test);

Example:

// prompt until the user gets the right password
String phrase;
do {

System.out.print("Password: ");
phrase = console.next();

} while (!phrase.equals("abracadabra"));

Copyright 2008 by Pearson Education
53

The Random class (5.1)
A Random object generates pseudo-random* numbers.

Class Random is found in the java.util package.
import java.util.*;

Example:

Random rand = new Random();
int randomNumber = rand.nextInt(10); // 0-9

Method name Description
nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

Copyright 2008 by Pearson Education
54

"Boolean Zen"
Students new to boolean often test if a result is true:

if (bothOdd(7, 13) == true) { // bad

...
}

But this is unnecessary and redundant. Preferred:

if (bothOdd(7, 13)) { // good

...

}

A similar pattern can be used for a false test:

if (bothOdd(7, 13) == false) { // bad

if (!bothOdd(7, 13)) { // good

Copyright 2008 by Pearson Education
55

"Boolean Zen", part 2
Methods that return boolean often have an
if/else that returns true or false:

public static boolean bothOdd(int n1, int n2) {
if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;
} else {

return false;
}

}

Observation: The if/else is unnecessary.
Our logical test is itself a boolean value; so return that!

public static boolean bothOdd(int n1, int n2) {

return (n1 % 2 != 0 && n2 % 2 != 0);

}

Copyright 2008 by Pearson Education
56

break (5.4)
break statement: Immediately exits a loop.

Can be used to write a loop whose test is in the middle.
Such loops are often called "forever" loops because their
header's boolean test is often changed to a trivial true.

while (true) {
statement(s);

if (test) {
break;

}

statement(s);
}

Some programmers consider break to be bad style.

Copyright 2008 by Pearson Education
57

Reading files (6.1)
To read a file, pass a File when constructing a Scanner.
Scanner name = new Scanner(new File("file name"));

Example:
File file = new File("mydata.txt");

Scanner input = new Scanner(file);

or, better yet:
Scanner input = new Scanner(new File("mydata.txt"));

Copyright 2008 by Pearson Education
58

The throws clause
throws clause: Keywords on a method's header that state
that it may generate an exception.

Syntax:
public static type name(params) throws type {

Example:
public class ReadFile {

public static void main(String[] args)

throws FileNotFoundException {

Like saying, "I hereby announce that this method might throw
an exception, and I accept the consequences if it happens."

Copyright 2008 by Pearson Education
59

Input tokens (6.2)
token: A unit of user input, separated by whitespace.

A Scanner splits a file's contents into tokens.

If an input file contains the following:
23 3.14

"John Smith"

The Scanner can interpret the tokens as the following types:

Token Type(s)
23 int, double, String
3.14 double, String
"John String
Smith" String

Copyright 2008 by Pearson Education
60

Files and input cursor
Consider a file numbers.txt that contains this text:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

A Scanner views all input as a stream of characters:
308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

input cursor: The current position of the Scanner.

Copyright 2008 by Pearson Education
61

Consuming tokens
consuming input: Reading input and advancing the cursor.

Calling nextInt etc. moves the cursor past the current token.

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

double x = input.nextDouble(); // 308.2

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

String s = input.next(); // "14.9"

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

Copyright 2008 by Pearson Education
62

Scanner exceptions
InputMismatchException

You read the wrong type of token (e.g. read "hi" as int).

NoSuchElementException
You read past the end of the input.

Finding and fixing these exceptions:
Read the exception text for line numbers in your code (the
first line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementException

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

Copyright 2008 by Pearson Education
63

Output to files (6.4)
PrintStream: An object in the java.io package that lets
you print output to a destination such as a file.

Any methods you have used on System.out
(such as print, println) will work on a PrintStream.

Syntax:

PrintStream name = new PrintStream(new File("file name"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));
output.println("Hello, file!");
output.println("This is a second line of output.");

Copyright 2008 by Pearson Education
64

System.out and PrintStream
The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;
PrintStream out2 = new PrintStream(new File("data.txt"));
out1.println("Hello, console!"); // goes to console
out2.println("Hello, file!"); // goes to file

A reference to it can be stored in a PrintStream variable.
Printing to that variable causes console output to appear.

You can pass System.out as a parameter to a method
expecting a PrintStream.

Allows methods that can send output to the console or a file.

Copyright 2008 by Pearson Education
65

Arrays (7.1)
array: object that stores many values of the same type.

element: One value in an array.
index: A 0-based integer to access an element from an array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

Copyright 2008 by Pearson Education
66

Array declaration
type[] name = new type[length];

Example:
int[] numbers = new int[10];

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
67

Accessing elements
name[index] // access
name[index] = value; // modify

Example:

numbers[0] = 27;
numbers[3] = -6;

System.out.println(numbers[0]);
if (numbers[3] < 0) {

System.out.println("Element 3 is negative.");
}

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

index 0 1 2 3 4 5 6 7 8 9

value 27 0 0 -6 0 0 0 0 0 0

Copyright 2008 by Pearson Education
68

Out-of-bounds
Legal indexes: between 0 and the array's length - 1.

Reading or writing any index outside this range will throw an
ArrayIndexOutOfBoundsException.

Example:
int[] data = new int[10];
System.out.println(data[0]); // okay
System.out.println(data[9]); // okay
System.out.println(data[-1]); // exception
System.out.println(data[10]); // exception

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
69

The length field
An array's length field stores its number of elements.

name.length

for (int i = 0; i < numbers.length; i++) {
System.out.print(numbers[i] + " ");

}
// output: 0 2 4 6 8 10 12 14

It does not use parentheses like a String's .length().

Copyright 2008 by Pearson Education
70

Quick array initialization
type[] name = {value, value, … value};

Example:
int[] numbers = {12, 49, -2, 26, 5, 17, -6};

Useful when you know what the array's elements will be.
The compiler figures out the size by counting the values.

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

Copyright 2008 by Pearson Education
71

The Arrays class
Class Arrays in package java.util has useful static
methods for manipulating arrays:

Method name Description
binarySearch(array, value) returns the index of the given value

in a sorted array (< 0 if not found)
equals(array1, array2) returns true if the two arrays

contain the same elements in the
same order

fill(array, value) sets every element in the array to
have the given value

sort(array) arranges the elements in the array
into ascending order

toString(array) returns a string representing the
array, such as "[10, 30, 17]"

Copyright 2008 by Pearson Education
72

Arrays as parameters
Declaration:

public static type methodName(type[] name) {

Example:
public static double average(int[] numbers) {

...

}

Call:
methodName(arrayName);

Example:
int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

Copyright 2008 by Pearson Education
73

Arrays as return
• Declaring:

public static type[] methodName(parameters) {

Example:

public static int[] countDigits(int n) {
int[] counts = new int[10];
...
return counts;

}

• Calling:
type[] name = methodName(parameters);

Example:

public static void main(String[] args) {
int[] tally = countDigits(229231007);
System.out.println(Arrays.toString(tally));

}

Copyright 2008 by Pearson Education
74

Value semantics (primitives)
value semantics: Behavior where values are copied when
assigned to each other or passed as parameters.

When one primitive variable is assigned to another,
its value is copied.
Modifying the value of one variable does not affect others.

int x = 5;
int y = x; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

x

y

Copyright 2008 by Pearson Education
75

Reference semantics (objects)
reference semantics: Behavior where variables actually
store the address of an object in memory.

When one reference variable is assigned to another, the object
is not copied; both variables refer to the same object.
Modifying the value of one variable will affect others.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};
int[] a2 = a1; // refer to same array as a1
a2[0] = 7;
System.out.println(a1[0]); // 7

9141412254value

6543210index

9141412257value

6543210indexa1

a2

Copyright 2008 by Pearson Education
76

Null
null : A reference that does not refer to any object.

Fields of an object that refer to objects are initialized to null.
The elements of an array of objects are initialized to null.

String[] words = new String[5];
DrawingPanel[] windows = new DrawingPanel[3];

nullnullnullnullnullvalue

43210index

nullnullnullvalue

210index

words

windows

Copyright 2008 by Pearson Education
77

Null pointer exception
dereference: To access data or methods of an object with
the dot notation, such as s.length().

It is illegal to dereference null (causes an exception).
null is not any object, so it has no methods or data.

String[] words = new String[5];
System.out.println("word is: " + words[0]);
words[0] = words[0].toUpperCase();

Output:
word is: null
Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

Copyright 2008 by Pearson Education
78

Classes and objects (8.1)
class: A program entity that represents either:

1. A program / module, or
2. A template for a new type of objects.

The DrawingPanel class is a template for creating
DrawingPanel objects.

object: An entity that combines state and behavior.
object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

Copyright 2008 by Pearson Education
79

Fields (8.2)
field: A variable inside an object that is part of its state.

Each object has its own copy of each field.
encapsulation: Declaring fields private to hide their data.

Declaration syntax:

private type name;

Example:

public class Student {
private String name; // each object now has
private double gpa; // a name and gpa field

}

Copyright 2008 by Pearson Education
80

Instance methods
instance method: One that exists inside each object of a
class and defines behavior of that object.

public type name(parameters) {
statements;

}

same syntax as static methods, but without static keyword

Example:

public void shout() {
System.out.println("HELLO THERE!");

}

Copyright 2008 by Pearson Education
81

A Point class
public class Point {

private int x;
private int y;

// Changes the location of this Point object.
public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);
g.drawString("(" + x + ", " + y + ")", x, y);

}
}

Each Point object contains data fields named x and y.

Each Point object contains a method named draw that draws
that point at its current x/y position.

Copyright 2008 by Pearson Education
82

The implicit parameter
implicit parameter:
The object on which an instance method is called.

During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

The instance method can refer to that object's fields.

We say that it executes in the context of a particular object.

draw can refer to the x and y of the object it was called on.

Copyright 2008 by Pearson Education
83

Kinds of methods
Instance methods take advantage of an object's state.

Some methods allow clients to access/modify its state.

accessor: A method that lets clients examine object state.
Example: A distanceFromOrigin method that tells how far a
Point is away from (0, 0).
Accessors often have a non-void return type.

mutator: A method that modifies an object's state.
Example: A translate method that shifts the position of a
Point by a given amount.

Copyright 2008 by Pearson Education
84

Constructors (8.4)
constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

Example:
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

runs when the client uses the new keyword

does not specify a return type; implicitly returns a new object

If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
85

toString method (8.6)
tells Java how to convert an object into a String

public String toString() {

code that returns a suitable String;
}

Example:
public String toString() {

return "(" + x + ", " + y + ")";
}

called when an object is printed/concatenated to a String:
Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

Every class has a toString, even if it isn't in your code.
Default is class's name and a hex number: Point@9e8c34

Copyright 2008 by Pearson Education
86

this keyword (8.7)
this : A reference to the implicit parameter.

implicit parameter: object on which a method is called

Syntax for using this:

To refer to a field:
this.field

To call a method:
this.method(parameters);

To call a constructor from another constructor:
this(parameters);

Copyright 2008 by Pearson Education
87

Static methods
static method: Part of a class, not part of an object.

shared by all objects of that class

good for code related to a class but not to each object's state

does not understand the implicit parameter, this;
therefore, cannot access an object's fields directly

if public, can be called from inside or outside the class

Declaration syntax:

public static type name(parameters) {
statements;

}

Copyright 2008 by Pearson Education
88

Inheritance (9.1)
inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

a way to group related classes
a way to share code between two or more classes

One class can extend another, absorbing its data/behavior.
superclass: The parent class that is being extended.
subclass: The child class that extends the superclass and
inherits its behavior.

Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
89

Inheritance syntax (9.1)
public class name extends superclass {

Example:

public class Secretary extends Employee {

...

}

By extending Employee, each Secretary object now:
receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
90

Overriding methods (9.1)
override: To write a new version of a method in a subclass
that replaces the superclass's version.

No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Secretary extends Employee {
// overrides getVacationForm in Employee class
public String getVacationForm() {

return "pink";
}
...

}

Copyright 2008 by Pearson Education
91

super keyword (9.3)
Subclasses can call overridden methods with super

super.method(parameters)

Example:
public class LegalSecretary extends Secretary {

public double getSalary() {
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

}
...

}

Copyright 2008 by Pearson Education
92

Polymorphism
polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

Example: System.out.println can print any type of object.
Each one displays in its own way on the console.

A variable of type T can hold an object of any subclass of T.
Employee ed = new LegalSecretary();

You can call any methods from Employee on ed.
You can not call any methods specific to LegalSecretary.

When a method is called, it behaves as a LegalSecretary.
System.out.println(ed.getSalary()); // 55000.0
System.out.println(ed.getVacationForm()); // pink

