

CSE 142/143 Unofficial Commenting Guide

Eric Arendt, Alyssa Harding, Melissa Winstanley

In Brief: What You Need to Know to Comment Methods in CSE 143
• Audience

o A random person you don’t know who wants to use your code but doesn’t care how it works.
o NOT your TA, who (hopefully) understands the code.
o NOT you, who wrote the code.
o If you need help, check out the Java API documentation and see how they write.

• Format
o Include a header comment with your name, section, TA, and brief description of the program, which

describes what the program does (avoiding implementation details – see below).
o The format should be pre/post (see section on pre/post below), JavaDoc, or some other format that

includes all the required information.
o Limit comments to 80 characters per line. Longer lines look horrible and will anger your TA.
o NOT in all caps.
o DO NOT write a book for your comments. This page, for example, is much too long.
o Use either multiline comments (/* */) or single line comments (//).

• Language
o Just say what the method does (ex. “Calculates a sum”) instead of “This method calculates…”
o Don’t say the method “should” do something – if you programmed it correctly, it “will” do it.
o Do not copy from the spec. The write up usually gives too much information for the comments. It is

a good idea to pull the key points for your comments from the write up and put them in your own
words, but only the appropriate information the client needs.

• Implementation details
o Avoid things that describe how your program works. Avoid mentioning the following things:

§ Local variable names, private field names
§ For loop, while loop, if/else, recursion, inner data structures, calls to other methods (note

that this list is not comprehensive – other things may be implementation detail)
§ If some implementation detail is vitally important (ex. “Uses a SortedMap to maintain

sorted order”), reformat the detail in a client-oriented way (ex. “Maintains sorted order”).
o Maybe later you learn some new technique and decide to change how a method works. But if you

have documented that the code uses a for loop, for example, you can't go back and change it. It is
therefore better to tell what the method does rather than how it does it.

• Parameters
o Describe what each parameter represents, either in a list or as part of the method description.
o Describe why each parameter is needed.
o Comment any special cases the client may care about, ex. The given list should be in sorted order.

• Output or return value
o If the program produces output, describe it.

§ Where does the output appear? On the console, in a file, etc.
§ What is the output? A list of numbers, a paragraph, the result of a computation, etc.
§ What is the output format? On multiple lines, in reverse order, separated by spaces, etc.

o If the program returns a value, describe what the returned value represents in relation to the input.
o Comment any special cases the client may care about, ex. Does it return null in a particular case?

• Exceptions
o Tell the user precisely what will cause an exception.
o Include the exact type of any exceptions that are thrown next to their causes, so the client knows

what could happen.

• Internal comments
o Just because implementation details are bad in method comments does not mean that you shouldn’t

describe how your code works.
o Place the comments inside the body of the method, letting anyone reading your code know what you

are doing.
o Do not comment trivial code, only code that is important, confusing, or tricky.
o Use single line comments (// comment here)

• Private methods
o Same rules as for public methods, but slightly less strict.
o Still try to avoid commenting implementation details.

• Fields
o Put a brief comment on each field describing what it represents.
o If the comment is essentially a repeat of the field’s name, then you may usually omit it.
o Comments on public fields or constants should avoid implementation details.

A good example program (replace the information with your own):

// Stuart Reges
// CSE 143 AA with Eric Arendt
// Homework 0
// A MyClass calculates sums and can print values, counting the number
// of times that it sums.
public class MyClass {

 // The number of times this class is used to find a sum.
 private int count;

// Pre: values must not be null (throws an IllegalArgumentException
// otherwise. All values in the values array must be non-negative
// (throws an IllegalArgumentException otherwise).
//
// Post: Calculates and returns the sum of the integers in the given
// array.

 public int findSum(int[] values) {
 ...

}

 // Pre: given value must be non-negative (throws

// IllegalArgumentException otherwise).
//
// Post: Prints the given integer value to the console four times,
// each on its own line.

 public void printFour(int value) {
 ...

}
}

In Detail: Commenting in General and With Explanation of Why

What are comments?

Comments are specially marked lines of text in your code that can be used to describe what's happening in your
program. Java ignores comments when it runs your program, so they're not necessary for actually making code
work properly.

There's no exact formula to writing comments. The important details of a method or program are different
depending on what the program or method does. The simplest way to know if your comments are sufficient is to
ask yourself this: "If I didn't understand the code in this method, would I still be able to use it properly by
reading only the comment and the method header?"

Why comments are useful?

It may seem like comments are a bit unnecessary, since you’re the one writing your code. The purpose of
comments isn't necessarily for the author's benefit (though they can be very useful as programs get more and
more complex), but rather for the benefit of others who read your code. You might have a useful method that
someone wants to use for another program, for example. Another programmer shouldn't have to reinvent the
wheel - they should use your method instead of writing their own. If your method is properly commented, all
they should have to read to know how your method works is the comment and the first line of the method (the
header).

Behavior vs. Implementation

Comments should describe the behavior of a method (what it does) but generally should not describe its
implementation (how it does it). If someone is really interested in exactly how a method works they can read
through the code. When writing a comment, avoid discussing the commands or variables you used or what calls
the method, and don't discuss what you thought about when you wrote the method or what you want it to do.
Just describe what it actually does.

Descriptions of the Program

Descriptions of the program should follow the same ideas as method comments but at a higher level. Describe
concisely but completely what someone can expect when they use the program, and don't go through all of the
details of how it works.

Internal vs. External Comments

Comments don't need to be restricted to the description of a method. You can comment lines of code inside
your method as well. Internal comments should be used to describe the behavior (not the implementation) of
more complicated pieces of code. Don't comment the obvious - it can actually make your code less readable.

Comment Tags

There are a couple of ways to designate a comment in Java.

// You can write comments with two slashes for every line of comments
// You need to put slashes on every line, which can be tedious.

/*
 You can also write blocks of comments using comment open/close tags.
 The commented section starts with /* and ends when a */ appears. Do
 not use these for internal method comments.
*/

///
/*
 * Comments can also be done more creatively, but use this style
 * in special cases. It's useful for giving an overall description
 * of large files, such as an entire library of methods that has
 * hundreds or thousands of lines of code, or for multiple files
 * that all need a description. You shouldn't use this style with
 * the short programs assigned in CSE 142 / 143.
 */
///

Commenting Simple Methods

Let’s look at examples of commenting a simple method that prints an introduction:

public static void intro() {

System.out.println("This program compares two applicants to");
System.out.println("determine which one seems like the stronger");
System.out.println("applicant. For each candidate I will need");
System.out.println("either SAT or ACT scores plus a weighted GPA.");

}

The following comment is too brief. It doesn't answer the most basic question of "what does the method do?"

// Intro
public static void intro() {

The following comment is much better. It concisely describes the method's behavior.

// Prints an introduction to the program to the console
public static void intro() {

The next version of the comment isn't very helpful. It mentions that it prints an introduction to the program,
which describes its behavior, but it also includes unnecessary details about the method's implementation. If
someone wants to know how the printing happens they can read the code.

// Uses four println statements to print four lines of introduction to
// the program. Each line is different, so each one needs a separate
// println statement.
public static void intro() {

Commenting Parameters

Suppose you have a useful method that prints a list of numbers up to and including a number passed in as a
parameter. A good comment (and all someone using the method should have to read) is this:

// Takes an int representing a maximum and prints a list of numbers to the
// console up to and including max in the format: 1, 2, 3, ..., max
public static void printNumberList(int max) {

for (int i = 1; i < max; i++) {
System.out.print(i + ", ");

}
System.out.println(max);

}

That seems pretty straightforward. The method and its parameters are well-named, and the comment is concise
but descriptive. What if you were to encounter the exact same method but it was named and commented like
this?

// Lists the numbers using a for loop
public static void list(int n) {

It's very difficult to tell what this method does. It could print a list up to but not including n (an important
difference) or it could print the list starting at n and going down to one. You can't even tell if it prints a list.
Maybe it adds the parameter n to some list, or maybe it makes "n" lists. The only way to know what this
method does and how to use it is to read all of the code and figure it out. This can be very time consuming. It's
also good to note that the name of a method and the names of its parameters - everything in the header - help
describe what the method does.

Commenting Methods with Return Values

Sometimes what a method returns might not be immediately obvious. A method that returns an int might be
returning a result it calculates, or it might print the result to the console and instead return the number of
seconds the calculation took. It's important to describe what the return value of a method represents so that
people know what to expect when they use it.

This first version of the method below is well commented. The comments are concise and correctly describe
what the method takes as a parameter and what it returns. The code is straightforward and explains itself.
Internal comments aren't really necessary here.

// Takes an integer n as a parameter and returns the factorial of n
public static int factorial(int n) {

int result = 1;
while (n > 1) {

result *= n;
n--;

}
return result;

}

The next comment isn't descriptive enough - it doesn't describe the input and output parameters. It calculates
the factorial of what? What does the int it returns represent?

// Calculates the factorial
public static int factorial(int n) {

The next version of the comments contains too many implementation details, and the internal comments
actually make the code less readable. If the code is correctly indented, it's perfectly obvious that the while loop
is a while loop and that it ends where its brackets end. n-- is obviously an update of n, and we can tell the return
statement is a return. Save internal comments for more complicated statements.

// Uses a result variable and a while loop to calculate the result of
// n factorial. The while loop runs until the result is calculated,
// and a return statement is used to return result.
public static int factorial(int n) {

int result = 1; // initialize result
// while loop
while (n > 1) {

result *= n;
n--; // update n

} // end of while loop
return result; // return

}

Describing Behavior and Internal Comments

The method below has appropriate internal and external comments. The comments concisely describe the
behavior of the method as well as the input parameters without discussing the implementation. The internal
comment is there to describe what an odd-looking piece of code is doing. It's sometimes good to leave
whitespace before an internal comment so that it's easier to read.

// Takes a Scanner "input" and a PrintStream "output" as parameters.
// Prints the contents of the input Scanner to output with trimmed
// whitespace and line breaks every 10 tokens. Existing line breaks
// in intro are ignored.
public static void addLineBreaks(Scanner input, PrintStream output) {

int tokenCount = 0;
while (input.hasNext()) {

output.print(input.next());
tokenCount++;
// Add a line break every 10th line
if(tokenCount % 10 == 0) {

output.println();
}

}
}

The next method description isn't sufficient. It doesn't correctly answer the questions "what does this code do?"
"what are the parameters?". If someone were to read these comments, they might be confused about what the
Scanner was supposed to contain and where the output was being printed to.

// prints out a file with line breaks every 10 tokens
public static void addLineBreaks(Scanner input, PrintStream output) {

The next version of the comments isn't appropriate because it deals with implementation details. We don't need
to know that the code uses a while loop in order to use it. If someone wants to find out HOW the code gets the
job done, they can read the code.

// Uses a while loop and a scanner to output the Scanner file
// with line breaks every 10 tokens.
public static void addLineBreaks(Scanner input, PrintStream output) {

Commenting Exceptions and Pre/Post conditions

Exceptions are an important part of the behavior of the method. When commenting a method that may throw an
exception, it's necessary to include the type of the exception and the conditions that throw it in your comments.
You can also provide a short explanation of why the exception was thrown in the Exception itself. This is a
nice way to give a user a little more information than just the exception type. When these exceptions are
thrown, the string describing why shows up in the exception trace.

Pre conditions and post conditions are a way to assert what must be true before and after a method runs. For the
findMax method to run properly, the preconditions for valid parameters must be true - it will throw an exception
otherwise. A post condition might be used to describe something that must have changed after the method is
run. A method that sorts a list, for example, has the post condition that the list is sorted. Some methods may
not have a post condition or (more rarely) may not have a pre condition.

/*
 * Pre: start >= 0, end <= list.length, start >= end
 * Throws an IllegalArgumentException if preconditions not met.
 *
 * Post: Takes an integer list and two integers representing the start
 * and end of a range in the list in which to search. Returns the
 * maximum value found in the list of integers between start and end,
 * start inclusive and end exclusive.
 */
public static int findMax(int[] list, int start, int end) {

if (start < 0 || end > list.length)
throw new IllegalArgumentException("start or end out of range");

if (start >= end)
throw new IllegalArgumentException("start is greater than end");

int max = list[start];
// Search the list for a maximum
for (int i = start + 1; i < end; i++)

max = Math.max(max, list[i]);
return max;

}

Commenting Fields

Fields, representing the state of the class, should be commented as well. Describe what the field represents.
These comments should not be lengthy, but they should help anyone reading your code to understand why the
field is important. However, be careful to only provide useful comments. If the field’s name is very self-
explanatory and your comment would add nothing, then it may be acceptable to omit the comment.

In the following example, the first two comments are good: they describe briefly what the field stores and the
format of the data. The last comment is poor because it merely repeats the name of the field. This comment is
okay to include, but not necessary. A better comment might be “The student’s age in years”.

public class Student {
 // The first and last name of the student.
 private String name;

 // The student’s score (from 0 to 100) on their latest test.
 private int score;

 // The student’s age.
 private int age;
}

