Building Java Programs

Chapter 16
Lecture 16-3: Complex Linked List Code;
Iterators and for each loops

reading: 16.2 - 16.3, 7.1, 11.1

Before addSorted (17) :

addSorted

* Write a method addsorted that accepts an int as a
parameter and adds it to a sorted list in sorted order.

front

After addSorted (17) :

front

-

data | next data | next data | next
| -4 8 [22]
element 0 element 1 element 2
data | next data | next data | next
| -4 8 17
element 0 element 1 element 2

data

next

2 |]

element 3

The common case

e Adding to the middle of a list:
SeiieE e ey

font = | data | next data | next data | next
-4 > 8 —— 22 /
element O element 1 element 2

Which references must be changed?
What sort of loop do we need?
When should the loop stop?

First attempt

* An incorrect loop:

Y e M AN O T o v A Vi it 7 2 9 e Sy s B X s S YA
while (current.data < wvalue)
R G))) Y WA= ol 9 1 0 i oy S A AV 0 Rt

}

data | next

front = >
-4
element 0

{

* What is wrong with this code?

current
data | next data | next
8 1+ 22 |]
element 1 element 2

The loop stops too late to affect the list in the right way.

Recall: changing a list

* There are only two ways to change a linked list:
Change the value of front (modify the front of the list)

Change the value of <node>.next (modify middle or end of list
to point somewhere else)

e Implications:
To add in the middle, need a reference to the previous node
Front is often a special case

/

Key idea: peeking ahead

» Corrected version of the loop:

Y e M AN O T o v A Vi it 7 2 9 e Sy s B X s S YA
while (current.next.data < wvalue) {
R G))) Y WA= ol 9 1 0 i oy S A AV 0 Rt

} current

data | next data | next data | next
front = >

-4 18 | H4—22 -]
element 0 element 1 element 2

This time the loop stops in the right place.

" Another case to handle

* Adding to the end of a list:
addSorted (42)

/

data | next data | next data | next
front = >

4 18 | {22 -]

element 0 element 1 element 2

Exception in thread '"main": java.lang.NullPointerException

Why does our code crash?
What can we change to fix this case?

Multiple loop tests

e A correction to our loop:

Y e M AN O T o v A Vi it 7 2 9 e Sy s B X s S YA
while (current.next != null &&
current.next.data < wvalue) {
current = current.next: current

}

data | next data | next data | next
front = >

4 18 | {22 -]
element 0 element 1 element 2

» We must check for a next of null before we check its .data.

Third casefto handle

e Adding to the front of a list:

addSorted (-10)

data

next

data | next data | next
front = >

-4 S N

element 0 element 1

What will our code do in this case?
What can we change to fix it?

2 |]

element 2

/I-Iandling the front

e Another correction to our code:

if (value <= front.data) {
// insert at front of list

front = new ListNode (value, front):;
} else {
// insert in middle of 1list
ListNode current = front;
while (current.next != null &&
O B9 A A BN Al =0 GV @ V= iy o i A iy e o
current = current.next;

» Does our code now handle every possible case?

10

Fourth case to handle

* Adding to (the front of) an empty list:
addSorted (42)

front =

What will our code do in this case?
What can we change to fix it?

11

//‘,‘vv’vh'-)

e —

Final version of code

// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
public void addSorted(int value) {

1f (front == null || value <= front.data) {
// insert at front of list
front = new ListNode (value, front):;
} else {
// insert in middle of 1list
LN o dewerpren—wisremba
while (current.next != null &&

current.next.data < wvalue) {
aurrentv=renrrventionexty;

12

Common special cases

middle: "typical" case in the middle of an existing list
back: special case at the back of an existing list
front: special case at the front of an existing list

empty: special case of an empty list

13

I[terators (11.1)

* An object that allows the efficient retrieval of elements of a
collection in sequential order

* Accessed using the .iterator() method provided in

collections. Each collection implements an iterator object
that best knows how to iterate through its data.

List<Double> grades = new LinkedlList<Double>() ;

Iterator<Double> i1itr = grades.iterator();
while (itr.hasNext()) {
Poubile ielement = b rinex ity

Lilido something with element
// use itr.remove() to delete previous element

14

= —

The "for each” loop (7.1)

for (type name : collection) {
statements;

* Provides a clean syntax for looping over the elements of a
List, array, or other collection

List<Double> grades = new LinkedList<Double>() ;

for (double grade : grades) ({
SV EemyomtwpEesnb it s buden e iswgrades s grade)

}

15

———

Concurrent Modification

* For both iterators and for each loops, you can not modify
the collection you are iterating/looping over

» If you try to modify the collection inside a for each loop,
you will get a ConcurrentModificationException

for) (Shring mame i inames)iy
e S e MO S LR e S s
meme s cddii el e e el

}

» With iterators, you can modify the collection being iterated
over, solely through the iterator.remove() method. This
method allows you to remove the element most recently
returned by the iterator.next() method

16

