
Adam Blank Autumn 2016Lecture 4

CSE
143

Computer Programming II



CSE 143: Computer Programming II

Stacks & Queues



Questions From Last Time 1



Drawings 2



Drawings 3



What Are We Doing Again? 4

What Are We Doing. . . ?
We’re learning some new data structures (we’re going to be the client of
them!).

Today’s Main Goals:
Finish up last time
To understand the difference betweeen an interface and an
implementation
To understand what stacks and queues are



Duplicated Code: Constructors 5

We’d like to have two constructors for ArrayIntList:
One that uses a default size
One that uses a size given by the user

Redundant Constructors
1 /* Inside the ArrayIntList class... */
2 public ArrayIntList() {
3 this.data = new int[10];
4 this.size = 0;
5 }
6
7 public ArrayIntList(int capacity) {
8 this.data = new int[capacity];
9 this.size = 0;

10 }

This is a lot of redundant code! How can we fix it?

Fixed Constructor
Java allows us to call one constructor from another using this(. . . ):

1 public ArrayIntList() {
2 this(10);
3 }



Class CONSTANTS 6

Looking back at the constructor, what’s ugly about it?
1 public ArrayIntList() {
2 this(10);
3 }

The 10 is a “magic constant”; this is really bad style!! We can use:
public static final type name = value

to declare a class constant.

So, for instance:

public static final int DEFAULT_CAPACITY = 10.

Class CONSTANT
A class constant is a global, unchangable value in a class. Some
examples:

Math.PI

Integer.MAX_VALUE, Integer.MIN_VALUE

Color.GREEN



Outline

1 Interfaces

2 Queues

3 Stacks



Abstract Data Types (ADT) 7

Abstract Data Type
An abstract data type is a description of what a collection of data can
do. We usually specify these with interfaces.

List ADT
In Java, a List can add, remove, size, get, set.

List Implementations
An ArrayList is a particular type of List. Because it is a list, we promise
it can do everything a List can. A LinkedList is another type of List.

Even though we don’t know how it works, we know it can do everything
a List can, because it’s a List.



Using the List ADT 8

This is INVALID CODE
1 List<String> list = new List<String>(); // BAD : WON’T COMPILE

List is a description of methods. It doesn’t specify how they work.

This Code Is Redundant
1 ArrayList<Integer> list = new ArrayList<Integer>();
2 list.add(5);
3 list.add(6);
4
5 for (int i = 0; i < list.size(); i++) {
6 System.out.println(list.get(i));
7 }
8
9 LinkedList<Integer> list = new LinkedList<Integer>();

10 list.add(5);
11 list.add(6);
12
13 for (int i = 0; i < list.size(); i++) {
14 System.out.println(list.get(i));
15 }

We can’t condense it any more when written this way, because
ArrayList and LinkedList are totally different things.



NOT Using the List ADT 9

Instead, we can use the List interface and swap out different
implementations of lists:

This Uses Interfaces Correctly!
1 List<Integer> list = new ArrayList<Integer>();
2 // = new LinkedList<Integer>();
3 // We can choose which implementation
4 // And the code below will work the
5 // same way for both of them!
6 list.add(5);
7 list.add(6);
8
9 for (int i = 0; i < list.size(); i++) {

10 System.out.println(list.get(i));
11 }

The other benefit is that the code doesn’t change based on which
implementation we (or a client!) want to use!



Queues 10

Queue
Real-world queues: a service line, printer jobs
A queue is a collection which orders the elements first-in-first-out
(“FIFO”). Note that, unlike lists, queues do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the first element (dequeue/peek).
Clients can ask for the size.
Clients can add to the back of the queue (enqueue).
Clients may only see the first element of the queue.

Client: ←Ð 7 ? ? ? ? ←Ð
Impl: ←Ð 7 -2 4 2 3 ←Ð

dequeue()
ÔÔÔÔ⇒↝

7

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

enqueue(9)
ÔÔÔÔÔ⇒

Client: ←Ð -2 ? ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 9 ←Ð



Applications Of Queues 11

Queue of print jobs to send to the printer

Queue of programs / processes to be run

Queue of keys pressed and not yet handled

Queue of network data packets to send

Queue of button/keyboard/etc. events in Java

Modeling any sort of line

Queuing Theory (subfield of CS about complex behavior of queues)



Queue Reference 12

Queue is an interface. So, you create a new Queue with:
Queue<Integer> queue = new LinkedList<Integer>();

enqueue(val) Adds val to the back of the queue
dequeue() Removes the first value from the queue; throws

a NoSuchElementException if the queue is
empty

peek() Returns the first value in the queue without re-
moving it; throws a NoSuchElementException
if the queue is empty

size() Returns the number of elements in the queue
isEmpty() Returns true if the queue has no elements



Okay; Wait; Why? 13

A queue seems like what you get if you take a list and remove methods.

Well. . . yes. . .
This prevents the client from doing something they shouldn’t.

This ensures that all valid operations are fast.

Having fewer operations makes queues easy to reason about.



Stacks 14

Stack
Real-world stacks: stock piles of index cards, trays in a cafeteria
A stack is a collection which orders the elements last-in-first-out
(“LIFO”). Note that, unlike lists, stacks do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the top element (pop/peek).
Clients can ask for the size.
Clients can add to the top of the stack (push).
Clients may only see the top element of the stack

Client:
↓↑

7
?
?
?
?

Impl:
↓↑

7
-2
4
2
3

pop()
ÔÔ⇒↝

7

Client:
↓↑

-2
?
?
?

Impl:
↓↑

-2
4
2
3

push(9)
ÔÔÔ⇒

Client:
↓↑

9
?
?
?
?

Impl:
↓↑

9
-2
4
2
3



Applications of Stacks 15

Your programs use stacks to run:
(pop = return, method call = push)!

1 public static fun1() {
2 fun2(5);
3 }
4 public static fun2(int i) {
5 return 2*i; //At this point!
6 }
7 public static void main(String[] args) {
8 System.out.println(fun1());
9 }

Execution:
↓↑

fun2
fun1
main

Compilers parse expressions using stacks

Stacks help convert between infix (3 + 2) and postfix (3 2 +).
(This is important, because postfix notation uses fewer characters.)

Many programs use “undo stacks” to keep track of user operations.



Stack Reference 16

Stack is an interface. So, you create a new Stack with:
Stack<Integer> stack = new Stack<Integer>();

Stack<E>() Constructs a new stack with elements of type E
push(val) Places val on top of the stack
pop() Removes top value from the stack and returns

it; throws NoSuchElementException if stack is
empty

peek() Returns top value from the stack without re-
moving it; throws NoSuchElementException if
stack is empty

size() Returns the number of elements in the stack
isEmpty() Returns true if the stack has no elements

Stack Reference

http://courses.cs.washington.edu/courses/cse143/15sp/cse143-util-documentation/Stack.html


Back to ReverseFile 17

Consider the code we ended with for ReverseFile from the first lecture:

Print out words in reverse, then the words in all capital letters

1 ArrayList<String> words = new ArrayList<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4 while (input.hasNext()) {
5 String word = input.next();
6 words.add(word);
7 }
8
9 for (int i = words.size() − 1; i >= 0; i−−) {

10 System.out.println(words.get(i));
11 }
12 for (int i = words.size() − 1; i >= 0; i−−) {
13 System.out.println(words.get(i).toUpperCase());
14 }

We used an ArrayList, but then we printed in reverse order. A Stack
would work better!



ReverseFile with Stacks 18

This is the equivalent code using Stacks instead:

Doing it with Stacks

1 Stack<String> words = new Stack<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4
5 while (input.hasNext()) {
6 String word = input.next();
7 words.push(word);
8 }
9

10 Stack<String> copy = new Stack<String>();
11 while (!words.isEmpty()) {
12 copy.push(words.pop());
13 System.out.println(words.peek());
14 }
15
16 while (!copy.isEmpty()) {
17 System.out.println(copy.pop().toUpperCase());
18 }



Illegal Stack Operations 19

You may NOT use get on a stack!
1 Stack<Integer> s = new Stack<Integer>();
2 for (int i = 0; i < s.size(); i++) {
3 System.out.println(s.get(i));
4 }

get, set, etc. are not valid stack operations.

Instead, use a while loop
1 Stack<Integer> s = new Stack<Integer>();
2 while (!s.isEmpty()) {
3 System.out.println(s.pop());
4 }

Note that as we discovered, the while loop destroys the stack.


	Interfaces
	Queues
	Stacks

