
Adam Blank Autumn 2016Lecture 4

CSE143
Computer Programming II

CSE 143: Computer Programming II

Stacks & Queues

Questions From Last Time 1 Drawings 2

Drawings 3 What Are We Doing Again? 4

What Are We Doing. . . ?
We’re learning some new data structures (we’re going to be the client of
them!).

Today’s Main Goals:
Finish up last time
To understand the difference betweeen an interface and an
implementation
To understand what stacks and queues are



Duplicated Code: Constructors 5

We’d like to have two constructors for ArrayIntList:
One that uses a default size
One that uses a size given by the user

Redundant Constructors
1 /* Inside the ArrayIntList class... */
2 public ArrayIntList() {
3 this.data = new int[10];
4 this.size = 0;
5 }
6
7 public ArrayIntList(int capacity) {
8 this.data = new int[capacity];
9 this.size = 0;

10 }

This is a lot of redundant code! How can we fix it?

Fixed Constructor
Java allows us to call one constructor from another using this(. . . ):

1 public ArrayIntList() {
2 this(10);
3 }

Class CONSTANTS 6

Looking back at the constructor, what’s ugly about it?
1 public ArrayIntList() {
2 this(10);
3 }

The 10 is a “magic constant”; this is really bad style!! We can use:
public static final type name = value

to declare a class constant.

So, for instance:

public static final int DEFAULT_CAPACITY = 10.

Class CONSTANT
A class constant is a global, unchangable value in a class. Some
examples:

Math.PI
Integer.MAX_VALUE, Integer.MIN_VALUE
Color.GREEN

Outline

1 Interfaces

2 Queues

3 Stacks

Abstract Data Types (ADT) 7

Abstract Data Type
An abstract data type is a description of what a collection of data can
do. We usually specify these with interfaces.

List ADT
In Java, a List can add, remove, size, get, set.

List Implementations
An ArrayList is a particular type of List. Because it is a list, we promise
it can do everything a List can. A LinkedList is another type of List.

Even though we don’t know how it works, we know it can do everything
a List can, because it’s a List.

Using the List ADT 8

This is INVALID CODE
1 List<String> list = new List<String>(); // BAD : WON’T COMPILE

List is a description of methods. It doesn’t specify how they work.

This Code Is Redundant
1 ArrayList<Integer> list = new ArrayList<Integer>();
2 list.add(5);
3 list.add(6);
4
5 for (int i = 0; i < list.size(); i++) {
6 System.out.println(list.get(i));
7 }
8
9 LinkedList<Integer> list = new LinkedList<Integer>();

10 list.add(5);
11 list.add(6);
12
13 for (int i = 0; i < list.size(); i++) {
14 System.out.println(list.get(i));
15 }

We can’t condense it any more when written this way, because
ArrayList and LinkedList are totally different things.

NOT Using the List ADT 9

Instead, we can use the List interface and swap out different
implementations of lists:

This Uses Interfaces Correctly!
1 List<Integer> list = new ArrayList<Integer>();
2 // = new LinkedList<Integer>();
3 // We can choose which implementation
4 // And the code below will work the
5 // same way for both of them!
6 list.add(5);
7 list.add(6);
8
9 for (int i = 0; i < list.size(); i++) {

10 System.out.println(list.get(i));
11 }

The other benefit is that the code doesn’t change based on which
implementation we (or a client!) want to use!



Queues 10

Queue
Real-world queues: a service line, printer jobs
A queue is a collection which orders the elements first-in-first-out
(“FIFO”). Note that, unlike lists, queues do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the first element (dequeue/peek).
Clients can ask for the size.
Clients can add to the back of the queue (enqueue).
Clients may only see the first element of the queue.

Client: ←Ð 7 ? ? ? ? ←Ð
Impl: ←Ð 7 -2 4 2 3 ←Ð

dequeue()ÔÔÔÔ⇒↝

7

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

enqueue(9)ÔÔÔÔÔ⇒ Client: ←Ð -2 ? ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 9 ←Ð

Applications Of Queues 11

Queue of print jobs to send to the printer

Queue of programs / processes to be run

Queue of keys pressed and not yet handled

Queue of network data packets to send

Queue of button/keyboard/etc. events in Java

Modeling any sort of line

Queuing Theory (subfield of CS about complex behavior of queues)

Queue Reference 12

Queue is an interface. So, you create a new Queue with:
Queue<Integer> queue = new LinkedList<Integer>();

enqueue(val) Adds val to the back of the queue
dequeue() Removes the first value from the queue; throws

a NoSuchElementException if the queue is
empty

peek() Returns the first value in the queue without re-
moving it; throws a NoSuchElementException
if the queue is empty

size() Returns the number of elements in the queue
isEmpty() Returns true if the queue has no elements

Okay; Wait; Why? 13

A queue seems like what you get if you take a list and remove methods.

Well. . . yes. . .
This prevents the client from doing something they shouldn’t.

This ensures that all valid operations are fast.

Having fewer operations makes queues easy to reason about.

Stacks 14

Stack
Real-world stacks: stock piles of index cards, trays in a cafeteria
A stack is a collection which orders the elements last-in-first-out
(“LIFO”). Note that, unlike lists, stacks do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the top element (pop/peek).
Clients can ask for the size.
Clients can add to the top of the stack (push).
Clients may only see the top element of the stack

Client:↓↑
7
?
?
?
?

Impl:↓↑
7
-2
4
2
3

pop()ÔÔ⇒↝

7

Client:↓↑
-2
?
?
?

Impl:↓↑
-2
4
2
3

push(9)ÔÔÔ⇒
Client:↓↑

9
?
?
?
?

Impl:↓↑
9
-2
4
2
3

Applications of Stacks 15

Your programs use stacks to run:
(pop = return, method call = push)!

1 public static fun1() {
2 fun2(5);
3 }
4 public static fun2(int i) {
5 return 2*i; //At this point!
6 }
7 public static void main(String[] args) {
8 System.out.println(fun1());
9 }

Execution:↓↑
fun2
fun1
main

Compilers parse expressions using stacks

Stacks help convert between infix (3 + 2) and postfix (3 2 +).
(This is important, because postfix notation uses fewer characters.)

Many programs use “undo stacks” to keep track of user operations.



Stack Reference 16

Stack is an interface. So, you create a new Stack with:
Stack<Integer> stack = new Stack<Integer>();

Stack<E>() Constructs a new stack with elements of type E
push(val) Places val on top of the stack
pop() Removes top value from the stack and returns

it; throws NoSuchElementException if stack is
empty

peek() Returns top value from the stack without re-
moving it; throws NoSuchElementException if
stack is empty

size() Returns the number of elements in the stack
isEmpty() Returns true if the stack has no elements

Stack Reference

Back to ReverseFile 17

Consider the code we ended with for ReverseFile from the first lecture:
Print out words in reverse, then the words in all capital letters

1 ArrayList<String> words = new ArrayList<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4 while (input.hasNext()) {
5 String word = input.next();
6 words.add(word);
7 }
8
9 for (int i = words.size() − 1; i >= 0; i−−) {

10 System.out.println(words.get(i));
11 }
12 for (int i = words.size() − 1; i >= 0; i−−) {
13 System.out.println(words.get(i).toUpperCase());
14 }

We used an ArrayList, but then we printed in reverse order. A Stack
would work better!

ReverseFile with Stacks 18

This is the equivalent code using Stacks instead:

Doing it with Stacks

1 Stack<String> words = new Stack<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4
5 while (input.hasNext()) {
6 String word = input.next();
7 words.push(word);
8 }
9

10 Stack<String> copy = new Stack<String>();
11 while (!words.isEmpty()) {
12 copy.push(words.pop());
13 System.out.println(words.peek());
14 }
15
16 while (!copy.isEmpty()) {
17 System.out.println(copy.pop().toUpperCase());
18 }

Illegal Stack Operations 19

You may NOT use get on a stack!
1 Stack<Integer> s = new Stack<Integer>();
2 for (int i = 0; i < s.size(); i++) {
3 System.out.println(s.get(i));
4 }

get, set, etc. are not valid stack operations.

Instead, use a while loop
1 Stack<Integer> s = new Stack<Integer>();
2 while (!s.isEmpty()) {
3 System.out.println(s.pop());
4 }

Note that as we discovered, the while loop destroys the stack.


