Adam Blank Lecture 4 Autumn 2016

CSE 143: Computer Programming I/

Stacks & Queues
PRSI d Comprder JG’QA\'I\S']’S
Cme we With blelr duwn
&:CV\I\N po((()lv- ~Sn st)

L, Trea, Tyte, C[«g(Bug
Escage ’
Computer Programming |l

To make & Udk of Il
Tafes oc bugs es cari

WP Pe byoe ([,\g(:)

Questions From Last Time 1 Drawings 2
g
e Oiler ~
o g wrt o1
g, ey, g W((‘ -
> s Q& 1 D
»/
‘\\ /(4 &
‘\\‘;§ ke it 17 Pmlt’ﬁ wiCd
= P g
p— P priwte Lhar p
= = e
S s g e O
)ufwr ﬁ“‘f’f’“ N F"V’t{\
/V\or\c‘wﬂ Q
What Are We Doing. ..?7
P—— y’g\s njlfr We're learning some new data structures (we're going to be the client of
‘r\\,.‘;\ t;{})'ji = ““l& them!).
i b
Fatr bt e
a1 o meild i 0D 2 > s
x ¥
I SVIY
=S o Today’s Main Goals:
T SN
%%’ﬁ . éuﬁ@)‘f i (?““66»@7- m Finish up last time
N \% i . m To understand the difference betweeen an interface and an
@ G @ Mk jutblor iy T implementation
< %
} = -y m To understand what stacks and queues are
Vs e
/ AN ot ® . //(”"f PR AL AL

Duplicated Code: Constructors 5

We'd like to have two constructors for ArrayIntList:
m One that uses a default size
m One that uses a size given by the user

Redundant Constructors
/* Inside the ArrayIntList class... */
public ArrayIntList() {

}

public ArrayIntList(int capacity) {
this.data = new int[capacity];
this.size = 0;

}

COONOUTAWN

—

This is a lot of redundant code! How can we fix it?

Fixed Constructor
Java allows us to call one constructor from another using this(...):

public ArrayIntList() {
this(10);
}

W N

utline

Interfaces
Queues

Stacks

Using the List ADT 8

This is INVALID CODE
1 List<String> list = new List<String>(); // BAD : WON’T COMPILE

List is a description of methods. It doesn't specify how they work.

This Code Is Redundant

ArraylList<Integer> list = new ArrayList<Integer>();
list.add(5);

list.add(6);

for (int i = 0; i < list.size(); i++) {
System.out.println(list.get(i));
}

©ONOG A WN -

LinkedList<Integer> list = new LinkedList<Integer>();
10 list.add(5);
11 list.add(6);

13 for (int i = 0; i < list.size(); i++) {

14 System.out.println(list.get(i));

15 }
We can't condense it any more when written this way, because
ArrayList and LinkedList are totally different things.

Looking back at the constructor, what's ugly about it?

1 public ArrayIntList() {
this(10);

N

3}
The 10 is a “magic constant”; this is really bad style!! We can use:
public static final type name = value

to declare a class constant.

So, for instance:

public static final int DEFAULT_CAPACITY = 10

Class CONSTANT

A class constant is a global, unchangable value in a class. Some
examples:

= Math.PI
m Integer.MAX_VALUE, Integer.MIN_VALUE
m Color.GREEN

Abstract Data Types (ADT) 7

Abstract Data Type

An abstract data type is a description of what a collection of data can
do. We usually specify these with interfaces.

List ADT

In Java, a List can add, remove, size, get, set.

List Implementations

An ArrayList is a particular type of List. Because it is a list, we promise
it can do everything a List can. A LinkedList is another type of List.

Even though we don't know how it works, we know it can do everything
a List can, because it’s a List.

NOT Using the List ADT 9

Instead, we can use the List interface and swap out different
implementations of lists:

This Uses Interfaces Correctly!

1 List<Integer> list = new ArrayList<Integer>();

2 // = new LinkedList<Integer>();

3 // We can choose which implementation
4 // And the code below will work the
5 // same way for both of them!

6 list.add(5);

7 list.add(6);

8

9 for (int i = 0; i < list.size(); i++) {

10 System.out.println(list.get(i));

1 3}

The other benefit is that the code doesn't change based on which
implementation we (or a client!) want to use!

Queues 10

Queue
Real-world queues: a service line, printer jobs
A queue is a collection which orders the elements first-in-first-out
(“FIFO”). Note that, unlike lists, queues do not have indices.
m Elements are stored internally in order of insertion.
m Clients can ask for the first element (dequeue/peek).
m Clients can ask for the size.
m Clients can add to the back of the queue (enqueue).
(]

Clients may only see the first element of the queue.

Client: <[7] ?2[7?2]7?]|7? |« dequeuweO Client: <—
mpl: (T2 [4[2[3) ¢ impl

(717 [7]-

- -

Client: «| -2 | 72| ? | ? |« enqueue(® Client: <«
impl: [2[4]2[3)~ impl: [2] 4]2[3]0])-

Queue Reference 12
Queue is an interface. So, you create a new Queue with:

Queue<Integer> queue = new LinkedList<Integer>();

Applications Of Queues

m Queue of print jobs to send to the printer

m Queue of programs / processes to be run

m Queue of keys pressed and not yet handled

m Queue of network data packets to send

m Queue of button/keyboard/etc. events in Java
m Modeling any sort of line

m Queuing Theory (subfield of CS about complex behavior of queues)

enqueue (val) | Adds val to the back of the queue

dequeue () Removes the first value from the queue; throws
a NoSuchElementException if the queue is
empty

peek() Returns the first value in the queue without re-
moving it; throws a NoSuchElementException
if the queue is empty

size() Returns the number of elements in the queue

isEmpty () Returns true if the queue has no elements

Stacks 14
Stack

Real-world stacks: stock piles of index cards, trays in a cafeteria

A stack is a collection which orders the elements last-in-first-out
(“LIFO"). Note that, unlike lists, stacks do not have indices.
Elements are stored internally in order of insertion.

Clients can ask for the top element (pop/peek).

Clients can add to the top of the stack (push).

(]
n

m Clients can ask for the size.

n

m Clients may only see the top element of the stack

Client: Impl: Client: Impl: CllleTnt. IT?I.
il
pop() push(9)
—_
M
7

Okay; Wait; Why?

A queue seems like what you get if you take a list and remove methods.

Well.. . yes. ..

m This prevents the client from doing something they shouldn't.
m This ensures that all valid operations are fast.

m Having fewer operations makes queues easy to reason about.

Applications of Stacks

m Your programs use stacks to run:

(pop = return, method call = push)!

1 public static funl() {

§ N fun2(5); Execution:
4 public static fun2(int i) { 1

5 return 2xi; //At this point! fun2

6 . . . funi

7 public static void main(String[] args) { -

8 System.out.printin(funl()); | main |
9 }

m Compilers parse expressions using stacks

m Stacks help convert between infix (3 + 2) and postfix (3 2 +).
(This is important, because postfix notation uses fewer characters.)

m Many programs use “undo stacks” to keep track of user operations.

Stack Reference 16 Back to ReverseFile 17
Stack is an interface. So, you create a new Stack with:
Consider the code we ended with for ReverseFile from the first lecture:
Stack<Integer> stack = new Stack<Integer>();
Print out words in reverse, then the words in all capital letters
Stack<E>() | Constructs a new stack with elements of type E 1 ArrayList<String> words = new ArrayList<String>();
push(val) Places val on top of the stack 2
3 Scanner input = new Scanner(new File("words.txt"));
pop(O Removes top value from the stack and returns 4 while (input.hasNext()) {
it; throws NoSuchElementException if stack is 5 String word = input.next();
empt 6 words.add(word) ;
pty : 73
peek() Returns top value from the stack without re- 8
moving it; throws NoSuchElementException if 9 for (int i = words.size() - 1; i >= 0; i--) {
stack is empty 1(1J) System.out.println(words.get(i));
size() Returns the number of elements in the stack 12 for (int i = words.size() - 1; i >= 0; i—-) {
isEmpty () Returns true if the stack has no elements ii) BB AR BTE 2 (EL) o Tl perEaEe())3
We used an ArrayList, but then we printed in reverse order. A Stack
would work better!
P
(4
Stack Reference
ReverseFile with Stacks 18 lllegal Stack Operations 19
This is the equivalent code using Stacks instead:
q g You may NOT use get on a stack!
Doing it with Stacks 1 Stack<Integer> s = new Stack<Integer>();
2 . (int 1 = 0; i < s.size(); i++) {
1 Stack<String> words = new Stack<String>(); Z } System.out.prlntln(s.-(l));
2
3 Scanner input = new Scanner(new File("words.txt"));
4 get, set, etc. are not valid stack operations.
5 while (input.hasNext()) {
6 String word = input.next();
7 words.push(word) ;
8 }
9
10 Stack<String> copy = new Stack<String>(); Instead, use a while loop
11 while (!'words.isEmpty()) { 1 Stack<Integer> s = new Stack<Integer>();
12 copy . push(words.pop()) ; 2 while (!s.isEmpty()) {
13 System.out.println(words.peek()); 3 System.out.println(s.pop());
14} 4}
15
16 while (!copy.isEmpty()) { i i
17 System. out.printin (copy @EB() . toUppercase()); Note that as we discovered, the while loop destroys the stack.
18 }

