
Adam Blank Autumn 2016Lecture 3

CSE
143

Computer Programming II



CSE 143: Computer Programming II

More ArrayIntList;
pre/post; exceptions;

debugging



Drawings 1



Drawings 2



Drawings 3



Drawings 4



Drawings 5



Questions Part 1 6

Eclipse is not installing: (1) make sure you are downloading Neon,
(2) uninstall and reinstall the JDK, (3) come to office hours/IPL

Is Viz open source? Not yet, but it will be.

Integer.toString(i) or i + “”?; either is fine

You should always use “this” when you can–see the style guidelines

Can we use Javadoc (e.g., “@params”)? Yes.

Are there any bugs that have shipped in Java. Yes; we’ll talk about
some later.

Do I have to put my curly brace on the same line? No, but be
consistent.



Questions Part 2 7

What’s the difference between primitives and Objects? Primitives
are built into Java and handled differently internally. You really
don’t have to know the difference, but I can explain in depth at
office hours.

Mac or PC? Doesn’t matter!

Use Java 1.8

How do I do well in this class? Do LOTS of practice-it problems.

When will we have everything we need for homework? It varies
week-by-week. You can almost always start the HW the day it
comes out; we may go through more useful things throughout the
week, but they shouldn’t block you from making progress.



Questions about stuff we’re getting to. . . 8

List vs. ArrayList

“this”

What exactly happens when ArrayList copies the array to get
more space?

How does ArrayList know how many more spaces to put?

What’s wrong with the toString() method?



Where Are We Again? 9

What Are We Doing. . . ?
We’re implementing our own (simpler) version of ArrayList to (a) see
how it works, and (b) get experience being the “implementor” of a class.

Today’s Main Goal:
To finish ArrayIntList!



Outline

1 Debugging

2 Removing Code Duplication

3 Improving Readability!

4 Preventing Malicious Behavior

5 Re-structuring the Code

6 Extras



WTF’s per Minute 10



Rubber Ducky, You’re The One! 11

A Bug?
1 public String toString() {
2 String result = "[";
3 for (int i = 0; i < this.size() − 1; i++) {
4 result += this.elementData[i] + ", ";
5 }
6
7 result += this.elementData[this.size() − 1];
8 result += "]";
9

10 return result;
11 }

Rubber Duck Debugging
Rubber Duck Debugging is the idea that when your code doesn’t work,
you talk to an inanimate object about what it does to find the error.

The idea is to verbalize what your code is supposed to do vs. what it is
doing. Just saying it out loud helps solve the problem.



NullPointerException 12

In add, we run the following line:

this.elementData[size] = element;

By default, unless we use the new keyword, all arrays are null. null is
Java’s way of saying “you haven’t told me what to put here yet”. So, if
this.elementData is null, then what is null[size]?

The take-away here is that finding an “index” of null doesn’t make
sense. We should ensure that we assign this.elementData to be a new
array if we want to use it.



Hitting Capacity 13

Example ArrayList

Client View: 29 1 3 9 8 ⋯

0 1 2 3 4

Impl. View: 29 1 3 9 8
a[0] a[1] a[2] a[3] a[4]

Let’s run add(3, 8)! Uh oh! There’s no space left. What do we do?

Create a new array of double the size, and copy the elements!

Resizing (Implementor View)

Before: 29 1 3 9 8
a[0] a[1] a[2] a[3] a[4]

Resize: 29 1 3 9 8 0 0 0 0 0
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Insert: 29 1 3 8 9 8 0 0 0 0
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]



Duplicated Code: Methods 14

Redundant add Methods
1 /* Inside the ArrayIntList class... */
2 public void add(int value) {
3 this.set(size, value); /* THIS LINE IS DUPLICATED BELOW!!! */
4 this.size++; /* THIS LINE IS DUPLICATED BELOW!!! */
5 }
6
7 /* Inserts value into the list at index. */
8 public void add(int index, int value) {
9 for (int i = size; i > index; i−−) {

10 this.set(i, this.get(i−1));
11 }
12 this.set(size, value); /* THIS LINE IS DUPLICATED ABOVE!!! */
13 this.size++; /* THIS LINE IS DUPLICATED ABOVE!!! */
14 }

The fix is to call the more general add method from the less general
one. (As a rule of thumb, methods with fewer arguments are less
general.) So, we’d replace the first method with:

Fixed add Method
1 public void add(int value) {
2 add(this.size, value);
3 }



Duplicated Code: Constructors 15

We’d like to have two constructors for ArrayIntList:
One that uses a default size
One that uses a size given by the user

Redundant Constructors
1 /* Inside the ArrayIntList class... */
2 public ArrayIntList() {
3 this.data = new int[10];
4 this.size = 0;
5 }
6
7 public ArrayIntList(int capacity) {
8 this.data = new int[capacity];
9 this.size = 0;

10 }

This is a lot of redundant code! How can we fix it?

Fixed Constructor
Java allows us to call one constructor from another using this(. . . ):

1 public ArrayIntList() {
2 this(10);
3 }



Class CONSTANTS 16

Looking back at the constructor, what’s ugly about it?
1 public ArrayIntList() {
2 this(10);
3 }

The 10 is a “magic constant”; this is really bad style!! We can use:
public static final type name = value

to declare a class constant.

So, for instance:

public static final int DEFAULT_CAPACITY = 10.

Class CONSTANT
A class constant is a global, unchangable value in a class. Some
examples:

Math.PI

Integer.MAX_VALUE, Integer.MIN_VALUE

Color.GREEN



Illegal Arguments 17

1 public class Circle {
2 int radius;
3 int x, y;
4 ...
5
6 public void moveRight(int numberOfUnits) {
7 this.x += numberOfUnits;
8 }
9 }

Are there any arguments to moveRight that are “invalid”?

Yes! We shouldn’t allow negative numbers.

The implementor is responsible for (1) telling the user about
invalid ways to use methods and (2) preventing a malicious user
from getting away with using their methods in an invalid way!



Preconditions 18

Precondition
A precondition is an assertion that something must be true for a
method to work correctly. The objective is to tell clients about invalid
ways to use your method.

Example Preconditions:
For moveRight(int numberOfUnits):

// pre: numberOfUnits >= 0

For minElement(int[] array):

// pre: array.length > 0

For add(int index, int value):

// pre: capacity >= size + 1; 0 <= index <= size

Preconditions are important, because they explain method behavior to
the client, but they aren’t enough! The client can still use the method
in invalid ways!



Preconditions 18

Precondition
A precondition is an assertion that something must be true for a
method to work correctly. The objective is to tell clients about invalid
ways to use your method.

Example Preconditions:
For moveRight(int numberOfUnits):
// pre: numberOfUnits >= 0

For minElement(int[] array):
// pre: array.length > 0

For add(int index, int value):
// pre: capacity >= size + 1; 0 <= index <= size

Preconditions are important, because they explain method behavior to
the client, but they aren’t enough! The client can still use the method
in invalid ways!



Exceptions 19

Exceptions
An exception is an indication to the programmer that something
unexpected has happened. When an exception happens, the program
immediately stops running.

To make an exception happen:
throw new ExceptionType();

throw new ExceptionType("message");

Common Exception Types
ArithmeticException, ArrayIndexOutOfBoundsException,
FileNotFoundException, IllegalArgumentException,
IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException,
UnsupportedOperationException, IndexOutOfBoundsException



Why Use Exceptions? 20

Exceptions prevent the client from accidentally using the method in a
way it wasn’t intended. They alert them about errors in their code!

An Example
1 public void set(int index, int value) {
2 if (index < 0 || index >= size) {
3 throw new IndexOutOfBoundsException(index);
4 }
5 this.data[index] = value;
6 }
7
8 public int get(int index) {
9 if (index < 0 || index >= size) {

10 throw new IndexOutOfBoundsException(index);
11 }
12 return data[index];
13 }

Uh oh! We have MORE redundant code!



Private Methods 21

Private Methods
A private method is a method that only the implementor can use.
They are useful to abstract out redundant functionality.

Better set/get
1 private void checkIndex(int index, int max) {
2 if (index < 0 || index > max) {
3 throw new IndexOutOfBoundsException(index);
4 }
5 }
6
7 public void set(int index, int value) {
8 checkIndex(index, size − 1);
9 this.data[index] = value;

10 }
11
12 public int get(int index) {
13 checkIndex(index, size − 1);
14 return data[index];
15 }



Postconditions 22

Postcondition
A postcondition is an assertion that something must be true after a
method has run. The objective is to tell clients what your method does.

Example Postconditions:
For moveRight(int numberOfUnits):

// post: Increases the x coordinate of the circle
// by numberOfUnits

For minElement(int[] array):

// post: returns the smallest element in array

For add(int index, int value):

// post: Inserts value at index in the ArrayList;
// shifts all elements from index to the end
// forward one index; ensures capacity of
// ArrayList is large enough

Postconditions are important, because they explain method behavior to
the client.



Postconditions 22

Postcondition
A postcondition is an assertion that something must be true after a
method has run. The objective is to tell clients what your method does.

Example Postconditions:
For moveRight(int numberOfUnits):
// post: Increases the x coordinate of the circle
// by numberOfUnits

For minElement(int[] array):
// post: returns the smallest element in array

For add(int index, int value):
// post: Inserts value at index in the ArrayList;
// shifts all elements from index to the end
// forward one index; ensures capacity of
// ArrayList is large enough

Postconditions are important, because they explain method behavior to
the client.



Client vs. Implementor. . . Again 23

And how does the client see all of our comments. . . ?



Using Fields Directly vs. Using Instance Methods 24

1 public class Circle {
2 int radius;
3 int x, y;
4
5 public Circle(int radius, int x, int y) {
6 this.radius = radius;
7 this.x = x;
8 this.y = y;
9 }

10
11 public void setX(int x) {
12 this.x = x;
13 }
14 public int getX() {
15 return this.x;
16 }
17
18 /* There are two possible implementations of moveRight... */
19 public void moveRight(int numberOfUnits) {
20 this.x += numberOfUnits;
21 }
22 public void moveRight(int numberOfUnits) {
23 this.setX(this.getX() + numberOfUnits);
24 }
25 }



Why Use Fields vs. Instance Methods? 25

Why Use Fields Directly?
It’s sometimes more readable to use the fields directly
The code is sometimes shorter

Why Use Getters and Setters?
What happens if we change the implementation (e.g. Point
location instead of int x, y)?
If there is code that checks validity of inputs, then we only put it in
one place



Implementing remove 26

(size = 5) 3 8 2 45 6 0 0 0
list[0] list[1] list[2] list[3] list[4] list[5] list[6] list[7]

list.remove(2):
(size = 3) 3 8 45 6 0 0 0 0

list[0] list[1] list[2] list[3] list[4] list[5] list[6] list[7]

How do we remove from the middle of the list?
Shift over all elements starting from the index to remove at
Set the last element to 0 (Do we need to do this?)
Decrement the size


	Debugging
	Removing Code Duplication
	Improving Readability!
	Preventing Malicious Behavior
	Re-structuring the Code
	Extras

