Adam Blank Lecture 8 Autumn 2016

125

Computer Programming |l

What Are We Doing Agai

What Are We Doing...?

We're building an alternative data structure to an ArrayList with
different efficiencies.

Today’s Main Goals:
m Get more familiarity with LinkedLists
m Write more LinkedList methods

m Learn how to “protect” against NullPointerExceptions

A New LinkedList Constructor 3

First Attempt
1 public LinkedList(int n) {
2 /* Current State x/

front

4 ListNode current = this.front;

front current

6 for (int i = 1; i <= n; i++) {
7 current = new ListNode(i);

front current

¥

©

9 current = current.next;

£ront current
+
10 H,
11 }
12 }
Remember, to edit a LinkedList, we MUST edit one of the following:
m front, or
m node.next (for some ListNode node)
In our code above, we edit current, which is neither.

Linked Lists |l

www . ihooky . com

You love computers then you went college

and play with thems learn many... things.

you learn that finally you learn the
programming is a stats language that every
programmer in knows:
B blasphemy. .
Wark you
piece of
§#

Viad Bazan () 2004

New Constructor

Create a constructor
public LinkedIntList(int n)
which creates the following LinkedIntList, when given n:

What kind of loop should we use?
A for loop, because we have numbers we want to put in the list.

What cases should we worry about?

We're creating the list; so, there aren't really “cases”.

A New LinkedList Constructor 4

Second Attempt
1 public LinkedList(int n) {
2 /* Current State */
front
3 if (n > 0) {
4 //n is at least 1...
5 this.front = new ListNode(1);
front
6
7 ListNode current = this.front;
front current
8
9 for (int i = 1; i <= n; i++) {
10 current.next = new ListNode(i);
front current
11 ﬁq -
12 current = current.next;
front current
[t
13
14 }
15 }
16 }

A New LinkedList Constructor: Another Solution 5 Imple

ing addSorted 6

This other solution works by going backwards. Before, we were editing

X . X . addSorted
the next fields. Here, we edit the front field instead:

Write a method addSorted(int value) that adds value to a sorted
LinkedIntList and keeps it sorted. For example, if we call
addSorted(10) on the following LinkedIntList,

Different Solution!
1 public LinkedList(int n) {

2 /* Current State */
h\:f" front
3 for (int i =n; i >0; i—-) {
4 ListNode next = this.front; E
trme_nare
5 We would get:
6 this.front = new ListNode(i, next);
£ront
_) P front
7 ” (s} {a[io} {323
8 } /= Second time through the loop (for demo)... */ E
9 //ListNode next = this.front; i . .
G o As always, we should approach this by considering the separate cases
10 (and then drawing pictures):
11 //this.front = new ListNode(i, next); m We're supposed to insert at the front
o m We're supposed to insert in the middle
= ! ;
12 m We're supposed to insert at the back
13 }

Case: Middle 7 Case: Middle 8

An Incorrect Solution Fixing the Problem
1 public void addSorted(int value) { //Say value = 10... 1 public void addSorted(int value) { //Say value = 10...
front front
) E) B0 =]
3 ListNode current = this.front; 3 ListNode current = this.front;
front current front curremt
4 [sFfe] 2 s}
5 while (current.data < value) { 5 while (current.next.data < value) {
6 current = current.next; 6 current = current.next;
front current front current
h 4
. L EE— . Lo)
8 } 8 }
9 ...the while loop continues... 9 ...the while loop STOPS now...
f£romt et 10 ListNode next = current.next;
10 _) front current n:}it
1 } 11 ‘_"_’-_’-_’ (4] E
12 current.next = new ListNode(value, next);
front current next
Uh Oh! We went too far! We needed the next field BEFORE us. 13 —>—>
14 }
Does this cover all the cases?

Adding At The End? Adding At The End?
s s s - public void addSorted(int value) {
1 public void addSorted(int value) { //Say value 40. .. LBEbie Qe & e, e
front /* If we are making a check for current.next, we must
ﬁ_)._)-_)32 -_)35 * be sure that current is not null. x/
2 ﬂ n - - while (current.next.data < value) {
3 ListNode current = this.front; /* Since we want to keep on going here,
o e — * the check must be made in the while loop.
current = current.next;
4 [eF
5 while (current.next.data < value) { ¥
current = current.next;) A Fix?
ront current
v public void addSorted(int value) {
7 (8][4} ListNode current = this.front;
/* The extra check here is useless...we’ve already checked
8 } * current.next by the time we get to it. */
9 ...the while loop continues... while (current.next.data < value & current.next != null) {
front current current.next current = current.next;
Vv
10 [s] }
11 ...AND IT KEEPS ON GOING... A Real Fix!
12 current.next.data — NullPointerException!!! GEU PP
13 } public void addSorted(int value) {
ListNode current = this.front;
while (current.next != null && current.next.data < value) {
We fell off the end of the LinkedList. current = current.next;
Idea: Make sure current.next exists. » ¥

Case: Beginning 11
Our current code only sets current to a new ListNode. Importantly,
this never updates front; so, we lose the new node.

Adding At The Beginning?
1 public void addSorted(int value) { //Say value = -10...
front
P [e]
3 if (value < front.data) { -10< -8 — true
4 ListNode next = front;
front next
B=0
6 front = new ListNode(value, next);
front next
h 4
- [EOET D
8 }
9 else {
10
11 }
12 }
Have we covered all of our cases now?
Protecting Our Tests! 13

Nope! What happens if front == null? We try to get the value of
front.data, and get a NullPointerException. The fix:

Working Code!

1 public void addSorted(int value) {

2 if (front == null || value < front.data) {
3 ListNode next = front;

4 front = new ListNode(value, next);

5 }

6 else {

7 while (current.next != null & current.next.data < value) {
8 current = current.next;

9 }

10

11 ListNode next = current.next;

12 current.next = new ListNode(value, next);
13 }

14 }

Helpfully, this fix actually handles the empty list case correctly!

Protecting Our Tests!

With LinkedList code, every time we make a test (if, while, etc.), we
need to make sure we're protected. Our current code is:

Working Code?

public void addSorted(int value) {

if (value < front.data) {
ListNode next = front;
front = new ListNode(value, next);

}

else {
while (current.next != null & current.next.data < value) {

current = current.next;

}

ListNode next = current.next;
current.next = new ListNode(value, next);

}

We're “protected” if we know we won't get a NullPointerException
when trying the test. So, consider our tests:

m value < front.data

m current.next != null && current.next.data < value

So, Are We Protected?

m Make sure to try all the cases:
m Empty List
m Front of Non-empty List
m Middle of Non-empty List
m Back of Non-empty List

m To Edit a LinkedList, the assignment must look like:
® this.front = <something>;, or
m node.next = <something>; (for some ListNode node in the list)

m Protect All Of Your Conditionals! Make sure that nothing can
accidentally be null.

m When protecting your conditionals, make sure the less complicated
check goes first.

Some LinkedList Tips! ¥

