
Adam Blank Autumn 2016Lecture 24

CSE
143

Computer Programming II



CSE 143: Computer Programming II

Comparable



Storing Multiple Choice Quizzes 1

The text files:
Each text file corresponds to answers for a multiple choice quiz.
Each line contains one answer.
For each quiz, answers.txt represents the correct answers.

MCQuiz Class
1 public class MCQuiz {
2 private String studentName;
3 private String quizName;
4 private List<String> correctAnswers;
5 private List<String> studentAnswers;
6
7 public MCQuiz(String filename) throws FileNotFoundException { ... }
8
9 public String getStudent() { ... }

10 public String getName() { ... }
11 public int numberCorrect() { ... }
12 }

We would like to do the two following tasks:
1 Print out the quizzes in worst-to-best order (e.g. sort the quizzes)
2 Collect all quizzes of each particular student together and display

them (still from worst-to-best)



Sorting Integers and Strings 2

A few lectures ago, we sorted the characters of a string. Let’s sort more:
Sorting An Integer List

1 public static void sortIntList(List<Integer> list) {
2 for (int i = 0; i < list.size(); i++) {
3 int minIndex = i;
4 for (int j = i; j < list.size(); j++) {
5 if (list.get(j) < list.get(minIndex)) {
6 minIndex = j;
7 }
8 }
9 int temp = list.get(minIndex);

10 list.set(minIndex, list.get(i));
11 list.set(i, temp);
12 }
13 }

Sorting A String List
1 public static void sortStringList(List<String> list) {
2 for (int i = 0; i < list.size(); i++) {
3 int minIndex = i;
4 for (int j = i; j < list.size(); j++) {
5 if (list.get(j) < list.get(minIndex)) {
6 minIndex = j;
7 }
8 }
9 String temp = list.get(minIndex);

10 list.set(minIndex, list.get(i));
11 list.set(i, temp);
12 }
13 }



Sorting Strings 3

Sorting A String List
1 if (list.get(j) < list.get(minIndex)) {
2 minIndex = j;
3 }

compareTo

Strings have a method called compareTo that works like < does on ints.
If we have two strings:

String hello = "hello" and String bye = "bye"
To do the test “hello < bye”, we do the following:

1 Write what we want: hello < bye
2 Subtract the right from both sides: hello - bye < 0
3 Replace the subtraction with compareTo:

hello.compareTo(bye) < 0

That’s it!

Sorting A String List
1 if (list.get(j).compareTo(list.get(minIndex)) < 0) {
2 minIndex = j;
3 }



Sorting Multiple Choice Quizzes 4

Sorting A MCQuiz List
1 public static void sort(List<MCQuiz> list) {
2 for (int i = 0; i < list.size(); i++) {
3 int minIndex = i;
4 for (int j = i; j < list.size(); j++) {
5 if (list.get(j).numberCorrect() < list.get(minIndex).numberCorrect()) {
6 minIndex = j;
7 }
8 }
9 MCQuiz temp = list.get(minIndex);

10 list.set(minIndex, list.get(i));
11 list.set(i, temp);
12 }
13 }

Strings were easier, because they knew how to compare themselves.

Implementing A compareTo
1 public int compareTo(MCQuiz other) {
2 // From above: list.get(j).numberCorrect() < list.get(minIndex).numberCorrect()
3 // Replacing: this.numberCorrect() < other.numberCorrect()
4 // Converting: this.numberCorrect() − other.numberCorrect() < 0
5 return this.numberCorrect() − other.numberCorrect();
6 }

Sorting An MCQuiz List
1 if (list.get(j).compareTo(list.get(minIndex)) < 0) {
2 minIndex = j;
3 }



How do sort and TreeSet work? 5

How do sort and TreeSet KNOW the ordering?

If you were implementing sort for a type T, what would you need to be
able to do with T a and T b?

We would need to be able to COMPARE a and b

That’s just an interface! Java calls it “Comparable”.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

1 public interface Comparable<E> {
2 public int compareTo(E other);
3 }

This says, “to be Comparable, classes must define compareTo”.



Printing The Quizzes in Order 6

Client Code to Print The Quizzes

1 List<MCQuiz> quizzes = createQuizzes(2);
2 // First, let’s get a sorted list of the quizzes
3 Collections.sort(quizzes);
4 for (MCQuiz quiz : quizzes) {
5 System.out.println(quiz);
6 }

This doesn’t work, because Java doesn’t know how to sort MCQuizzes.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

1 public interface Comparable<E> {
2 public int compareTo(E other);
3 }

This says, “to be Comparable, classes must define compareTo”.



MCQuiz: Defining compareTo 7

Attempt #1
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 return this.numberCorrect() − other.numberCorrect();
5 }

This doesn’t; work, because if we have a quiz where someone got 1/10
and another where someone else got 1/5, we treat them as the same.

Attempt #2
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 return (double)this.numberCorrect()/this.correctAnswers.size() −
5 (double)other.numberCorrect()/other.correctAnswers.size();
6 }

This won’t even compile! We need to return an int.



Comparable: Tricks #1 & #2 8

int Fields
If we have a field int x in our class, and we want to compare with it,
our code should look like:

1 public class Sample implements Comparable<Sample> {
2 public int compareTo(Sample other) {
3 return Integer.compare(this.x, other.x);
4 }
5 }

Object Fields
If we have a field Thing x in our class, and we want to compare with it,
our code should look like:

1 public class Sample implements Comparable<Sample> {
2 public int compareTo(Sample other) {
3 return this.x.compareTo(other.x);
4 }
5 }

In other words, just use the existing compareTo on the field in the class!



MCQuiz: Defining compareTo 9

Attempt #3
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 double thisPer = this.numberCorrect()/this.correctAnswers.size();
5 double otherPer = other.numberCorrect()/other.correctAnswers.size();
6 return Double.compare(thisPer, otherPer);
7 }

This still doesn’t work, because it doesn’t take the names of the
students into account.
In particular, if two students both get 1/10 on a quiz, our compareTo
method says “it doesn’t matter which one goes first”.
Attempt #4

1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 double thisPer = this.numberCorrect()/this.correctAnswers.size();
5 double otherPer = other.numberCorrect()/other.correctAnswers.size();
6 int result = Double.compare(thisPer, otherPer);
7 if (result == 0) { result = this.studentName.compareTo(other.studentName); }
8 return result;
9 }

This still doesn’t work, but it’s not as clear why. Let’s try the second
task.



Grouping the Quizzes by Student 10

What data structure should we use to group the quizzes? A Map!
Map Question: “Which quizzes were taken by this student?”
Keys: Strings (the student names)
Values: Set<MCQuiz> (all the quizzes that student took).

1 List<MCQuiz> quizzes = createQuizzes(2);
2 Map<String, Set<MCQuiz>> quizzesByStudent = new TreeMap<>();
3
4 // We want to loop over all the quizzes, adding them one by one
5 for (MCQuiz quiz : quizzes) {
6 String name = quiz.getStudent();
7 if (!quizzesByStudent.containsKey(name)) {
8 quizzesByStudent.put(name, new TreeSet<MCQuiz>());
9 }

10 quizzesByStudent.get(name).add(quiz);
11 }
12
13 // Now, we want to print out the quizzes student by student:
14 for (String student : quizzesByStudent.keySet()) {
15 System.out.println(student + ": " + quizzesByStudent.get(student));
16 }



Grouping the Quizzes by Student 11

The output looks like this:
OUTPUT

>> AdamBlank: [AdamBlank (quiz1): 1/11, AdamBlank (quiz0): 4/11]
>> BarbaraHarris: [BarbaraHarris (quiz1): 3/11, BarbaraHarris (quiz0): 4/11]
>> ChrisHill: [ChrisHill (quiz0): 3/11, ChrisHill (quiz1): 4/11]
>> JessicaHerna: [JessicaHernan (quiz1): 1/11, JessicaHernan (quiz0): 2/11]
>> TeresaHall: [TeresaHall (quiz0): 4/11]

Why does Teresa only have one quiz? She scored the same on both of
her quizzes and compareTo said they were the same!

Final Attempt
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 double thisPer = this.numberCorrect()/this.correctAnswers.size();
5 double otherPer = other.numberCorrect()/other.correctAnswers.size();
6 int result = Double.compare(thisPer, otherPer);
7
8 if (result == 0) {
9 result = this.studentName.compareTo(other.studentName);

10 }
11 if (result == 0) {
12 result = this.quizName.compareTo(other.quizName);
13 }
14 return result;
15 }

Lesson: When you write compareTo, make sure that
a.compareTo(b) == 0 exactly when a.equals(b)



Some Comparable Tips 12

Understand multi-level structures

Use the most general interface as possible

When implementing compareTo, make sure to use all the fields that
make it different (to put another way: a.compareTo(b) == 0
exactly when a.equals(b))

Remember that inside classes, you can look at the fields of other
instances of that class


