
CSE 143: Computer Programming II Autumn 2016

Midterm Exam Solutions

Name: Sample Solutions

ID: bovik @washington.edu
TA: The Best Section: A9

INSTRUCTIONS:

• You have 60 minutes to complete the exam.

• You will receive a deduction if you keep working after the instructor calls for papers.

• This exam is closed-book and closed-notes. You may not use any computing devices including
calculators.

• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.

• Do not abbreviate code, such as “ditto” marks or dot-dot-dot (“. . . ”) marks. The only ab-
breviations that are allowed for this exam are: S.o.p for System.out.print and S.o.pln for
System.out.println.

• You do not need to write import statements in your code.

• You may not use extra scratch paper on this exam. Use the provided spaces for extra work.

• If you write work you want graded on a strange page, clearly label it.

• If you enter the room, you must turn in an exam before leaving the room.

• You must show your Student ID to a TA or instructor for your exam to be accepted.

• If you get stuck on a problem, move on and come back to it later.

Problem Points Score Problem Points Score

1 15 4 20

2 15 5 20

3 15 6 15

Σ 100

Page 1 of 16



This page left intentionally almost Adam.

Question #1: Scratch Work

Page 2 of 16



Mechanical Missions.
This section tests whether you are able to trace through code of various types in the same
way a computer would.

1. Recursive Tracing [15 points]

1 public static void mystery(int n) {
2 if (n <= 1) {
3 System.out.print(n);
4 }
5 else {
6 System.out.print(n + ", ");
7 mystery(n / 2);
8 System.out.print(", " + n);
9 }

10 }

For each of the following, fill in the String printed when the given mystery method call is run.

mystery Call String Printed

(a) mystery(1) 1

(b) mystery(3) 3, 1, 3

(c) mystery(4) 4, 2, 1, 2, 4

(d) mystery(6) 6, 3, 1, 3, 6

(e) mystery(12) 12, 6, 3, 1, 3, 6, 12

Page 3 of 16



This page left intentionally almost Adam.

Question #2: Scratch Work (Hint: Draw Pictures)

Page 4 of 16



2. ListNode Before & After [15 points]
Your task in this question is to write code to turn the “before” picture into the “after” picture. You may
not change any existing node’s data value. You may not construct any new nodes. In each part, you may
declare up to two new variables of type ListNode. Recall the ListNode class from lecture:

1 public class ListNode {
2 public final int data;
3 public ListNode next;
4
5 public ListNode(int data) { ... }
6 public ListNode(int data, ListNode next) { ... }
7 }

Before & After Your Code

(a)

Before: 1 2 3

list1 list2

After: 1 2

list1

3

list2

list2 = list1.next.next;
list1.next.next = null;

(b)

Before: 1 3

list1

2

list2

After: 1 2 3

list1 list2

list2.next = list1.next;
list1.next = list2;
list2 = null;

(c)

Before: 1 2

list1

3 4

list2

After: 2 4

list1

3 1

list2

list1.next.next = list2.next;

list2.next = list1;

list1 = list1.next;

list2.next.next = null;

(d)

Before: 1 2 3

list1

4 5

list2

After: 2 1 4

list1

3 5

list2

ListNode temp = list2;
list2 = list1.next.next;
list1.next.next = list1;
list1 = list1.next;
list1.next.next = temp;
list2.next = temp.next;
temp.next = null;

Page 5 of 16



Page 6 of 16



Programming Pursuits.
This section tests whether you synthesized various topics well enough to write novel programs
using those topics.

3. AryItLst [15 points]
Add a method collapse to the ArrayIntList class that collapses the contents of the ArrayIntList
of integers by replacing each successive pair of integers with the sum of the pair. If the list stores an odd
number of elements, the final element should not be collapsed.

Example Output

Before list.collapse() After list.collapse()

[7, 2, 8, 9, 4, 13, 7, 1, 9, 10] [9, 17, 17, 8, 19]
[1, 2, 3, 4, 5] [3, 7, 5]

Implementation Restrictions
• You may not call any other methods on the ArrayIntList object (e.g., add, remove)

• You may not use a foreach loop on the ArrayIntList.

• You may not use any other data structures such as arrays, lists, queues, etc.
• Your solution should run in O(n) time, where n is the number of elements in the list.

public class ArrayIntList {
private int size;
private int[] elementData;

// Write Your Solution Here

}

Page 7 of 16



This page left intentionally almost Adam.

Question #3: Extra Solution Space
Solution:

1 public void collapse() {
2 for (int i = 0; i < size / 2; i++) {
3 this.elementData[i] = this.elementData[2 ∗ i] + this.elementData[2 ∗ i + 1];
4 }
5 if (this.size % 2 == 0) {
6 this.size = this.size / 2;
7 }
8 else {
9 this.elementData[this.size / 2] = this.elementData[this.size − 1];

10 this.size = this.size / 2 + 1;
11 }
12 }

Page 8 of 16



4. RecuRsion [20 points]
Write a recursive method called commonChars that takes two Strings as parameter and returns a new
string representing the characters that they have in common. The characters that are different between
the two strings should be represented by a “.” in the new String. You may assume that the parameters
do not contain any “.” characters.

Example Output

Method Call Return Value
commonChars("", "") ""

commonChars("a", "a") "a"
commonChars("AaA", "Aaa") "Aa."
commonChars("abc", "cba") ".b."

commonChars("hello world", "heyya world") "he... world"

Implementation Restrictions
• You must use recursion.

• You may assume that both input Strings are the same length.

• You may assume that both input Strings are not null.

• You may only use the String methods on the cheatsheet.

Page 9 of 16



This page left intentionally almost Adam.

Question #4: Extra Solution Space
Solution:

1 public static String commonChars(String s1, String s2) {
2 if (s1.length() == 0) {
3 return "";
4 }
5 else {
6 if (s1.charAt(0) == s2.charAt(0)) {
7 return s1.charAt(0) + commonChars(s1.substring(1), s2.substring(1));
8 }
9 else {

10 return "." + commonChars(s1.substring(1), s2.substring(1));
11 }
12 }
13 }

Page 10 of 16



5. Some Maps [20 points]
Write a method called sumMaps that takes two Maps from Strings to ints as parameters and returns
a new map that associates each key from either/both of the inputs with the sum of the values in both
maps. The map returned by your method should be as fast as possible.

Example Output

Input Maps Return Value
{}, {a=1, e=3} {a=1, e=3}

{a=1, b=2, c=3, d=4}, {a=2, c=5, e=6} {a=3, b=2, c=8, d=4, e=6}

Implementation Restrictions
• You may assume that the arguments are not null

• Your method should not modify the parameters

• Your method should run in O(n) time (e.g., you should not have any nested loops)

Page 11 of 16



This page left intentionally almost Adam.

Question #5: Extra Solution Space
Solution:

1 public static Map<String, Integer> sumMaps(Map<String, Integer> m1, Map<String, Integer> m2) {
2 Map<String, Integer> output = new HashMap<String, Integer>();
3 for (String key : m1.keySet()) {
4 output.put(key, m1.get(key));
5 }
6 for (String key : m2.keySet()) {
7 if (!output.containsKey(key)) {
8 output.put(key, 0);
9 }

10 output.put(key, output.get(key) + m2.get(key));
11 }
12 return output;
13 }

Page 12 of 16



6. Stacks and Queues. . . [15 points]
Write a method cancel that takes a Stack of integers as a parameter and modifies it by removing all
consecutive pairs that sum to zero. Whenever removing one pair that sums to zero results in another
consecutive pair that sums to zero, make sure to remove that pair as well.

Example Output

stack1

↓↑

1

cancel(stack1)−−−−−−−−−→
stack1

↓↑

1

stack2

↓↑

1

-1

2

3

-3

4

cancel(stack2)−−−−−−−−−→

stack2

↓↑

2

4

stack3

↓↑

1

2

-2

-1

3

4

5

cancel(stack3)−−−−−−−−−→

stack3

↓↑

3

4

5

Implementation Restrictions
• You may assume the input stack is not null.

• You may create at most one stack and no other data structures.

• You may not use recursion to solve this problem.

• Your solution must run in O(n) time, where n is the size of the stack.

Page 13 of 16



Use This Box For Scratch Work DO NOT WRITE YOUR SOLUTION HERE

Page 14 of 16



This page left intentionally almost Adam.

Question #6: Solution Space
Solution:

1 public static void cancel(Stack<Integer> stack) {
2 Stack<Integer> tmp = new Stack<Integer>();
3 while (!stack.isEmpty()) {
4 int top = stack.pop();
5 if (!stack.isEmpty() && top + stack.peek() == 0) {
6 stack.pop();
7 }
8 else if (!tmp.isEmpty() tmp.peek() + top == 0) {
9 tmp.pop();

10 }
11 else {
12 tmp.push(top);
13 }
14 }
15 while (!tmp.isEmpty()) {
16 stack.push(tmp.pop());
17 }
18 }

Page 15 of 16



Page 16 of 16


