
CSE 143 Winter 2015
Programming Assignment #1: LetterInventory

Due Thursday, January 15, 2014, 11:30 PM

This assignment focuses on arrays, classes, and ArrayLists. Turn in the following files using the link on the homework

section of the course website:

 LetterInventory.java – A class that keeps track of an inventory of letters of the alphabet.

 decodedCryptogram.txt – The decoded version of the cryptogram, cryptogram.txt, which you will

 be able to create using your program. (See later pages.)

You will need the support files FrequencyAnalysis.java and cryptogram.txt from the homework section of the course

web site to decrypt the cryptogram; place these in the same folder as your program or project. You should not modify the

provided files. The code you submit must work properly with their unmodified versions.

Implementation Details
Your LetterInventory class should store the inventory (how many a’s, how many b’s, etc.) as an array with 26 counters

(one for each letter) along with any other data fields you find that you need. Remember, though, we want to minimize the

number of data fields whenever possible. Your class should ignore the case of the letters (e.g., “a” and “A” are the same)

and ignore anything that is not an alphabetic character (e.g., it ignores punctuation characters and digits). You should

introduce a class constant for the value 26 to add to readability.

Constructors
The LetterInventory class should have the following two constructors:

public ()

Constructs an empty inventory (all counts are 0).

public (String data)

Constructs an inventory (a count) of the alphabetic letters in data (the given string). Uppercase and

lowercase letters should be treated as the same (for example, ‘a’ and ‘A’ are the same. All non-alphabetic

characters should be ignored.

Methods
The LetterInventory class should have the following public methods:

public int (char letter)

Returns a count of how many of this letters are in the inventory. letter can be lowercase or uppercase

(your method shouldn’t care). If a non-alphabetic character is passed, your method should throw an

IllegalArgumentException.

public void (char letter, int value)

Sets the count for the given letter to the given value. letter might be lowercase or uppercase. If a non-

alphabetic character is passed or if value is negative, your method should throw an

IllegalArgumentException.

public int ()

Returns the sum of all of the counts in this inventory. This operation should be “fast” in the sense that it

should store the size rather than computing it each time the method is called.

public boolean ()

Returns true if this inventory is empty (all counts are 0). This operation should be “fast” in the sense that it

shouldn’t loop over the array each time the method is called.

public String ()

Returns a String representation of the inventory with all the letters in lowercase, in sorted order, and

surrounded by square brackets. The number of occurrences of each letter should match its count in the

inventory. For example, an inventory of 4 a’s, 1 b, 1 l and 1 m would be represented as “[aaaablm]”.

public LetterInventory (LetterInventory other)

Constructs and returns a new LetterInventory object that represents the sum of this LetterInventory and

the other given LetterInventory. The counts for each letter should be added together. The two

LetterInventory objects being added together (this and other) should not be changed by this method.

You might be tempted to implement the add method by calling the toString method, but you may not use

that approach, because it would be inefficient for inventories with large character counts.

Below is an example of how the add method might be called:

LetterInventory inventory1 = new LetterInventory("George W. Bush");

LetterInventory inventory2 = new LetterInventory("Hillary Clinton");

LetterInventory sum = inventory1.add(inventory2);

The first inventory would correspond to [beegghorsuw], the second would correspond to [achiilllnnorty]

and the third would correspond to [abceegghhiilllnnoorrstuwy]

public LetterInventory (LetterInventory other)

Constructs and returns a new LetterInventory object that represents the difference of this letter inventory

and the other given LetterInventory. The counts from the other inventory should be subtracted from the

counts of this one. The two LetterInventory objects being subtracted (this and other) should not be

changed by this method. If any resulting count would be negative, your method should return null.

public double (char letter)

Returns a double representing the percentage of letters in the inventory that are letter.

If there are no letters in the inventory, you should return 0.

If a non-alphabetic character is passed, your method should throw an IllegalArgumentException.

Useful Properties of Strings and Characters
You will need to know certain things about the properties of letters and type char. It might help to look at the section in

Chapter 4 of the textbook about the type char.

One of the most important ideas is that the values of type char have corresponding integer values. There is a character

with value 0, a character with value 1, a character with value 2 and so on. You can compare different values of type char

using less-than and greater-than tests. For example:

if (ch >= 'a') {

 ...

}

All of the lowercase letters appear grouped together in type char ('a' is followed by 'b' followed by 'c', and so on), and all

of the uppercase letters appear grouped together in type char ('A' followed by 'B' followed by 'C' and so on). Because of

this, you can compute a letter’s displacement (or distance) from the letter 'a' with an expression like the following (this

expression assumes the variable letter is of type char and stores a lowercase letter):

letter – ‘a’

Going in the other direction, if you know a char’s integer equivalent, you can cast the result to char to get the character.

For example, suppose that you want to get the letter that is 8 away from 'a'. You could say:

char result = (char) ('a' + 8);

This assigns the variable result the value 'i'.

As in these examples, you should write your code for LetterInventory in terms of displacement from a fixed letter like

'a' rather than including the specific integer value of a character like 'a'.

You probably want to look at the String and Character classes for useful methods (e.g., there is a toLowerCase method

in each). You will have to pay attention to whether a method is static or not. The String methods are mostly instance

methods, because Strings are objects. The Character methods are all static because char is a primitive type. For

example, assuming you have a variable called s that is a String, you can turn it into lowercase by saying:

s = s.toLowerCase();

This is a call on an instance method where you put the name of the object first. But char values are not objects and the

toLowerCase method in the Character class is a static method. So assuming you have a variable called ch that is of type

char, you'd turn it to lowercase by saying:

ch = Character.toLowerCase(ch);

You can read about String operations on pages 160 – 166 of the textbook.

Translating the Ciphertext

In this assignment, you’ve implemented the LetterInventory data structure. In particular, you’ve seen the data structure

from the implementor’s view. One possible client for this data structure is a class that performs frequency analysis of letters

in a cryptogram to decode it. One type of cryptogram which frequency analysis of letters is often very useful for is

transposition ciphers. A transposition cipher is a type of cryptogram where all occurrences of each particular letter are all

replaced with a single other letter.

For instance, if the original text were “hello i like bananas”, one possible transposition cipher would make the

following replacements: a  v, b  a, e  t, h  x, i  q, k  o, l  p, n  u, o  r, s  w. Then, the encrypted

text would be: xtppr q pqot avuvuvuw.

We have given you a client implementation of a FrequencyAnalysis program, which uses your LetterInventory.
When your LetterInventory is working, you should be able to run the FrequencyAnalysis on ciphertext.txt to

decode it. Turn in the result as decodedCryptogram.txt

Development Strategy
One of the most important techniques for software professionals is to develop code in stages rather than trying to write it all

at once (the technical term is iterative enhancement or stepwise refinement). It is also important to be able to test the

correctness of your solution at each different stage. We have noticed that many 143 students do not develop their code in

stages and do not have a good idea of how to test their solutions. As a result, for this assignment we will provide you with

a development strategy and some testing code. We aren’t going to provide exhaustive testing code, but we’ll give you some

good examples of the kind of testing code we want you to write.

We suggest that you develop the program in four stages:

1. In this stage, we want to test constructing a LetterInventory and examining its contents. So the methods we

will implement are the constructors, the size method, the isEmpty method, the get method, and the toString

method. Even within this stage you can develop the methods slowly. First, do the constructor and size

methods. Then, add the isEmpty method. Then, add the get method. Then, add the toString method. The

testing program will test them in this order; so, it will be possible to implement them one at a time.

2. In this stage, we want to add the set method which allows the client to change the number of occurrences of an

individual letter. The testing program will verify that other methods work properly in conjunction with set (the

get, isEmpty, size, and toString methods).

3. In this stage, we want to include the add and subtract methods. You should write the add method first and

make sure it works. The testing program first tests add; so, don’t worry that the fact that the tests on subtract

fail initially.

4. Finally, we want to include the getLetterPercentage method. A partial test of this method is to run the

FrequencyAnalysis and check that the text makes sense.

We will be providing some testing code for the first three stages (but not the fourth). You may discuss how to write testing

code with other students. Keep in mind that the tests are not guaranteed to be exhaustive. They are meant to be examples

of the kinds of tests you should perform.

Style Guidelines and Grading:

A major focus of our style grading is redundancy. As much as possible, avoid redundancy and repeated logic in your code.

One powerful way to avoid redundancy is to create "helper" method(s) to capture repeated code. It is legal to have additional

methods in your LetterInventory class beyond those specified here. For example, you may find that multiple methods

in your class do similar things. If so, you should create helper method(s) to capture the common code. (You should declare

such methods to be private rather than public, so that outside code cannot call them.)

Your letter inventory should maintain its list of letters internally in a field of type array as stated previously. You should

not use any other data structures.

Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary fields; use fields

to store important data of your objects but not to store temporary values only used in one place. Fields should always be

initialized inside a constructor or method, never at declaration.

You should follow good general Java style guidelines such as: appropriately using control structures like loops and if/else

statements; avoiding redundancy using techniques such as methods, loops, and factoring common code out of if/else

statements; properly using indentation, good variable names, and types; and not having any lines of code longer than 100

characters in length. (If you have any such lines, split them into two or more lines using a line break.)

You should comment your code with a heading at the top of your class with your name, section, and a description of the

overall program. Also place a comment heading on top of each method, and a comment on any complex sections of your

code. Comment headings should use descriptive complete sentences and should be written in your own words, explaining

each method's behavior, parameters, return values, and assumptions made by your code, as appropriate. The ArrayIntList
class from lecture provides a good example of the kind of documentation we expect you to include. You do not have to use

the pre/post format, but you must include the equivalent information, including exactly what type of exception is thrown if

a precondition is violated.

Unless otherwise specified, your solution should use only material taught in class and in the book chapters covered so far.

