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CSE 143 Practice Final Exam #0 
 

1. Binary Tree Traversals.  Consider the following tree. 

 
                                 +---+ 

                                 | 2 | 

                                 +---+ 

                               /       \ 

                             /           \ 

                       +---+               +---+ 

                       | 7 |               | 6 | 

                       +---+               +---+ 

                      /     \                   \ 

                     /       \                   \ 

                  +---+     +---+               +---+ 

                  | 9 |     | 0 |               | 1 | 

                  +---+     +---+               +---+ 

                           /     \             /     \ 

                          /       \           /       \ 

                       +---+     +---+     +---+     +---+ 

                       | 5 |     | 3 |     | 4 |     | 8 | 

                       +---+     +---+     +---+     +---+ 

 

   Fill in each of the traversals below: 

 

 

        Preorder traversal  ___________________________________________ 

 

 

        Inorder traversal   ___________________________________________ 

 

 

        Postorder traversal ___________________________________________ 

 

 

 

2. Binary Search Tree. Draw a picture below of the binary search tree that would result from inserting the following words 

into an empty binary search tree in the following order: Legolas, Frodo, Sam, Merry, Pippin, Aragorn, Gimli, Boromir. 
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3. Collections Mystery.  Consider the following method: 

 
public static void mystery(Map<String, String> m) { 

      Set<String> s = new TreeSet<String>(); 

      for (String key : m.keySet()) { 

          if (!m.get(key).equals(key)) { 

              s.add(m.get(key)); 

          } else { 

              s.remove(m.get(key)); 

          } 

      } 

      System.out.println(s); 

} 

 

Write the output that is printed when the given method above is passed each of the following maps as its parameter. Your 

answer should display the right values in the right order. 
          Map                       printed output 

        --------------------------------------------------------------------- 

 

{sheep=wool, house=brick, cast=plaster, wool=wool}    

  

__________________________________________________________________ 

 

{munchkin=blue, winkie=yellow, corn=yellow, grass=green, emerald=green}  

 

__________________________________________________________________ 

 

{pumpkin=peach, corn=apple, apple=apple, pie=fruit, peach=peach}    

 

  __________________________________________________________________ 

 

{lab=ipl, lion=cat, terrier=dog, cat=cat, platypus=animal, nyan=cat} 

 

  __________________________________________________________________ 
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4. Details of Inheritance. 

 

Assuming that the following classes have been 

defined: 

 
public class Gorge extends Cliff { 

   public void method2() { 

      System.out.println("Gorge 2"); 

   } 

    

   public void method3() { 

      System.out.println("Gorge 3"); 

   } 

} 

 

public class Hill extends Peak { 

   public void method2() { 

      System.out.println("Hill 2"); 

   } 

    

   public void method3() { 

      System.out.println("Hill 3"); 

   } 

} 

 

public class Peak { 

   public void method1() { 

      System.out.println("Peak 1"); 

      method3(); 

   } 

    

   public void method3() { 

      System.out.println("Peak 3"); 

   } 

} 

 

public class Cliff extends Peak { 

   public void method3() { 

      System.out.println("Cliff 3"); 

      super.method3(); 

   } 

} 

 

   And assuming the following variables have been 

defined: 

 
Peak var1 = new Cliff(); 

Gorge var2 = new Gorge(); 

Peak var3 = new Hill(); 

Peak var4 = new Gorge(); 

Peak var5 = new Peak(); 

Object var6 = new Cliff(); 

 

In the table below, indicate in the right-hand column the output 

produced by the statement in the left-hand column. If the statement 

produces more than one line of output, indicate the line breaks with 

slashes as in "a/b/c" to indicate three lines of output with "a" 

followed by "b" followed by "c". If the statement causes an error, 

fill in the right-hand column with either the phrase "error". 

 
Statement               Output 

 

var1.method1();   _____________________ 

 

var2.method1();   _____________________ 

 

var3.method1();   _____________________ 

 

var4.method1();   _____________________ 

 

var5.method1();   _____________________ 

 

var6.method1();   _____________________ 

 

var1.method2();   _____________________ 

 

var2.method2();   _____________________ 

 

var3.method2();   _____________________ 

 

var1.method3();   _____________________ 

 

var2.method3();   _____________________ 

 

var3.method3();   _____________________ 

 

((Gorge)var6).method1();_____________________ 

 

((Cliff)var3).method2();_____________________ 

 

((Gorge)var4).method2();_____________________ 

 

((Gorge)var3).method2();_____________________ 

 

((Hill)var3).method2(); _____________________ 

 

((Gorge)var1).method1();_____________________ 

 

((Cliff)var4).method3();_____________________ 

 

((Peak)var6).method3(); _____________________ 
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5. Binary Trees. Write a toString method for a binary tree of integers. The method should return "empty" for an empty 

tree. For a leaf node, it should return the data in the node as a String. For a branch node, it should return a parenthesized 

String that has three elements separated by commas: the data at the root followed by a String representation of the left 

subtree followed by a String representation of the right subtree. For example, if a variable t stores a reference to the 

following tree:  
                      +---+ 

                      | 2 | 

                      +---+ 

                    /       \ 

             +---+             +---+ 

             | 8 |             | 1 | 

             +---+             +---+ 

            /                 /     \ 

        +---+             +---+     +---+ 

        | 0 |             | 7 |     | 6 | 

        +---+             +---+     +---+ 

                         /               \ 

                     +---+               +---+ 

                     | 4 |               | 9 | 

                     +---+               +---+ 

  

  then the call t.toString() should return the following String: 

 

        "(2, (8, 0, empty), (1, (7, 4, empty), (6, empty, 9)))" 

 

   The quotes above are used to indicate that this is a String but should not be included in the String that you return. 

 

   You are writing a public method for a binary tree class defined as follows: 
        public class IntTreeNode { 

            public int data;          // data stored in this node 

            public IntTreeNode left;  // reference to left subtree 

            public IntTreeNode right; // reference to right subtree 

 

            <constructors> 

        } 

 

        public class IntTree { 

            private IntTreeNode overallRoot; 

 

            <methods> 

        } 

 

You may define private helper methods to solve this problem, but otherwise you may not call any other methods of the 

class. You may not define any auxiliary data structures to solve this problem. 
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6. Collections Programming.  Write a method called sumStrings takes a map whose keys are strings and whose values are 

points and that returns a map that associates each point with the sum of the lengths of the strings it is associated with in 

the first map. 

    

For example, suppose that a map called data has the following associations: 

 
{a=[x=1,y=3], apple=[x=7,y=7], be=[x=4,y=7], bear=[x=7,y=4], carpet=[x=2,y=19], 

cat=[x=1,y=3], dog=[x=2,y=18], specialty=[x=7,y=4], student=[x=1,y=3], 

umbrella=[x=42,y=8]} 

 

   Then the call sumStrings(data) should return the following map: 

 
{[x=7,y=7]=5, [x=42,y=8]=8, [x=2,y=18]=3, [x=1,y=3]=11, [x=2,y=19]=6, 

[x=7,y=4]=13, [x=4,y=7]=2} 

 

Notice that the point [x=7,y=7] maps to 5 in the result because it was associated with a string of length 5 in the original 

("apple"). Notice that [x=1,y=3] maps to 11 because it was associated with three strings ("a", "cat", "student") whose 

lengths add up to 11 (1, 3, 7). 

 

 Your method should construct the new map and can construct iterators but should otherwise not construct any new data 

structures. It should also not modify the map passed as a parameter and it should be reasonably efficient. 

 

7. Comparable class.  Define a class called TimeSpan that keeps track of an amount of time. A time span can be thought 

of in two ways. You can think of it as being a certain number of hours, minutes, and seconds where each hour is 

composed of 60 minutes and each minute is composed of 60 seconds. Or you can think of it as the total number of 

seconds. The class has the following public methods: 

 

     TimeSpan(hrs, min, sec) constructs a TimeSpan object with the given , minutes, and seconds 

     hours()   returns the number of hours 

     minutes()                   returns the number of minutes (0 to 59) 

     seconds()   returns the number of seconds (0 to 59) 

     totalSeconds()   returns the total number of seconds including minutes and hours components 

     add(other)                  returns a new TimeSpan object formed by adding  TimeSpan to the other TimeSpan 

     toString()                  returns a string in the form "hhh:mm:ss" 

 

   For example, the following code constructs three TimeSpan objects: 
        TimeSpan t1 = new TimeSpan(18, 3, 54); 

        TimeSpan t2 = new TimeSpan(95, 58, 7); 

        TimeSpan t3 = t1.add(t2); 

The first TimeSpan object is expressed as 18 hours, 3 minutes, and 54 seconds. The totalSeconds method would report 

this as 65034 seconds. The call t1.toString() should produce "18:03:54". Notice that the minutes are reported as two digits 

even when it is a single digit. The same should be true of the seconds, so t2.toString() should produce the string 

"95:58:07".  Your class should make sure that minutes and seconds are always reported as being between 0 and 59. When 

t1 and t2 are added together to produce t3, the resulting time should be reported as 114 hours, 2 minutes, and 1 second, 

with t3.toString() returning "114:02:01". 

 

Your constructor should throw an IllegalArgumentException if any value passed to it is negative. It should fix values of 

minutes and seconds that are higher than 59, adjusting hours and minutes appropriately. For example, given the following 

call: 
        TimeSpan t4 = new TimeSpan(4, 65, 100); 

 

the resulting TimeSpan object should be reported as 5 hours, 6 minutes, and 40 seconds with t4.toString() returning 

"5:06:40".  The TimeSpan class should implement the Comparable<E> interface, where a  shorter amount of time is 

considered less than a longer amount of time. 
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8. Binary Trees. Write a method called add that takes as a parameter a reference to a second binary tree and that adds the 

values in the second tree to this tree. If the method is called as follows: 

 

        tree1.add(tree2); 

 

it should add all values in tree2 to the corresponding nodes in tree1. In other words, the value stored at the root of tree2 

should be added to the value stored at the root of tree1 and the values in tree2's left and right subtrees should be added to 

the corresponding positions in tree1's left and right subtrees. The values in tree2 should not be changed by your method. 

 
          initial tree1            initial tree2             final tree1 

              +---+                    +---+                    +---+ 

              | 1 |                    | 2 |                    | 3 | 

              +---+                    +---+                    +---+ 

             /     \                  /     \                  /     \ 

         +---+     +---+          +---+     +---+          +---+     +---+ 

         | 4 |     | 7 |          | 3 |     | 1 |          | 7 |     | 8 | 

         +---+     +---+          +---+     +---+          +---+     +---+ 

 

If tree1 has a node that has no corresponding node in tree2, then that node is unchanged. For example, if tree2 is empty, 

tree1 is not changed at all. 

 

 It is also possible that tree2 will have one or more nodes that have no corresponding node in tree1. For each such node, 

create a new node in tree1 in the corresponding position with the value stored in tree2's node. For example: 
 

          initial tree1            initial tree2             final tree1 

              +---+                    +---+                    +---+ 

              | 6 |                    | 1 |                    | 7 | 

              +---+                    +---+                    +---+ 

             /                        /     \                  /     \ 

         +---+                    +---+     +---+          +---+     +---+ 

         | 2 |                    | 4 |     | 5 |          | 6 |     | 5 | 

         +---+                    +---+     +---+          +---+     +---+ 

        /                              \                  /     \ 

    +---+                              +---+          +---+     +---+ 

    | 8 |                              | 2 |          | 8 |     | 2 | 

    +---+                              +---+          +---+     +---+ 

 

 

You are writing a method that will become part of the IntTree class. You may define private helper methods to solve this 

problem, but otherwise you may not assume that any particular methods are available. You are NOT to replace any of the 

existing nodes in the tree. You will, however, construct new nodes to be inserted into the tree as described above. 
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9. Linked Lists. Write a method called rearrange that rearranges the order of a list of integers so that all of the values in 

even-numbered positions appear in reverse order followed by all of the values in odd-numbered positions in forward 

order. We are using zero-based indexing, as with Java arrays and lists, where the first element is considered to be at 

position 0. For example, if a variable called list stores these values: 

 
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

 

and you make the following call: 

 
        list.rearrange(); 

 

the list should store the following values after the call: 

 
        [8, 6, 4, 2, 0, 1, 3, 5, 7, 9] 

 

In this example the values in the original list were equal to their positions and there were an even number of elements, but 

that won't necessarily be the case. For example, if the list had instead stored: 
 

        [3, 8, 15, 9, 4, 42, 5] 

 

 then after a call on rearrange it would store: 
 

        [5, 4, 15, 3, 8, 9, 42] 

 

 If the list has fewer than two elements, it should be unchanged by a call on rearrange. 

 

 You are writing a public method for a linked list class defined as follows: 

 
        public class ListNode { 

            public int data;       // data stored in this node 

            public ListNode next;  // link to next node in the list 

 

            <constructors> 

        } 

  

        public class LinkedIntList { 

            private ListNode front; 

 

            <methods> 

        } 

 

You are writing a method that will become part of the LinkedIntList class. You may define private helper methods to 

solve this problem, but otherwise you may not assume that any particular methods are available. You are allowed to 

define your own variables of type ListNode, but you may not construct any new nodes, and you may not use any auxiliary 

data structure to solve this problem (no array, ArrayList, stack, queue, String, etc). You also may not change any data 

fields of the nodes. You MUST solve this problem by rearranging the links of the list. Your solution must run in O(n) time 

where n is the length of the list. 
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Key 

1.      Preorder traversal  2, 7, 9, 0, 5, 3, 6, 1, 4, 8 

        Inorder traversal   9, 7, 5, 0, 3, 2, 6, 4, 1, 8 

        Postorder traversal 9, 5, 3, 0, 7, 4, 8, 1, 6, 2 

 

2.                                  
                                   +------------+ 

                                   |  Legolas   | 

                                   +------------+ 

                                /                  \ 

                             /                        \ 

                          /                              \ 

                  +-----------+                       +---------+ 

                  |   Frodo   |                       |   Sam   | 

                  +-----------+                       +---------+ 

                /              \                     / 

               /                \                   / 

              /                  \                 / 

    +-------------+          +-----------+  +-----------+ 

    |   Aragorn   |          |   Gimli   |  |   Merry   | 

    +-------------+          +-----------+  +-----------+ 

                   \                                    \ 

                    \                                    \ 

                     \                                    \ 

                 +-------------+                      +------------+ 

                 |   Boromir   |                      |   Pippin   | 

                 +-------------+                      +------------+ 

 

3.         map                       printed output 

        --------------------------------------------------------------------- 

{sheep=wool, house=brick, cast=plaster, wool=wool}   {brick, plaster} 

{munchkin=blue, winkie=yellow, corn=yellow, grass=green, emerald=green} {blue, green, yellow}  

{pumpkin=peach, corn=apple, apple=apple, pie=fruit, peach=peach}  {fruit}  

{lab=ipl, lion=cat, terrier=dog, cat=cat, platypus=animal, nyan=cat} {animal, cat, dog, ipl} 

 

4.                           Statement                       Output 
        var1.method1();                 Peak 1/Cliff 3/Peak 3 

        var2.method1();                 Peak 1/Gorge 3 

        var3.method1();                 Peak 1/Hill 3 

        var4.method1();                 Peak 1/Gorge 3 

        var5.method1();                 Peak 1/Peak 3 

        var6.method1();                 error 

        var1.method2();                 error 

        var2.method2();                 Gorge 2 

        var3.method2();                 error 

        var1.method3();                 Cliff 3/Peak 3 

        var2.method3();                 Gorge 3 

        var3.method3();                 Hill 3 

        ((Gorge)var6).method1();        error 

        ((Cliff)var3).method2();        error 

        ((Gorge)var4).method2();        Gorge 2 

        ((Gorge)var3).method2();        error 

        ((Hill)var3).method2();         Hill 2 

        ((Gorge)var1).method1();        error 

        ((Cliff)var4).method3();        Gorge 3 
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        ((Peak)var6).method3();         Cliff 3/Peak 3 

5. One possible solution appears below. 

 
public String toString() { 

   return toString(overallRoot); 

} 

 

private String toString(IntTreeNode root) { 

   if (root == null) 

      return "empty"; 

   else if (root.left == null && root.right == null) 

      return "" + root.data; 

   else 

      return "(" + root.data + ", " + toString(root.left) 

   + ", " + toString(root.right) + ")"; 

} 

 

6. One possible solution appears below. 

 
        public static Map<Point, Integer> sumStrings(Map<String, Point> data) { 

            Map<Point, Integer> result = new HashMap<Point, Integer>(); 

            for (String s : data.keySet()) { 

                Point p = data.get(s); 

                if (!result.containsKey(p)) { 

                    result.put(p, s.length()); 

                } else { 

                    result.put(p, result.get(p) + s.length()); 

                } 

            } 

            return result; 

        } 

                 

 

7. Two possible solutions appear below. 

 
        public class TimeSpan implements Comparable<TimeSpan> { 
            private int totalSeconds; 
         
            public TimeSpan(int hours, int minutes, int seconds) { 
                if (hours < 0 || minutes < 0 || seconds < 0) { 
                    throw new IllegalArgumentException(); 
                } 
                totalSeconds = seconds + 60 * (minutes + 60 * hours); 
            } 
         
            public int hours() { 
                return totalSeconds / 3600; 
            } 
         
            public int minutes() { 
                return totalSeconds % 3600 / 60; 
            } 
         
            public int seconds() { 
                return totalSeconds % 60; 
            } 
         
            public int totalSeconds() { 
                return totalSeconds; 



 

Page 10 of 11 

            } 
         
            public String toString() { 
                return hours() + ":" + minutes() / 10 + minutes() % 10 + ":" + 
                    seconds() / 10 + seconds() % 10; 
            } 
         
            public TimeSpan add(TimeSpan other) { 
                TimeSpan result = new TimeSpan(0, 0, 0); 
                result.totalSeconds = totalSeconds + other.totalSeconds; 
                return result; 
            } 
         
            public int compareTo(TimeSpan other) { 
                return this.totalSeconds - other.totalSeconds; 
            } 
        } 
         
        public class TimeSpan implements Comparable<TimeSpan> { 
            private int hours, minutes, seconds; 
         
            public TimeSpan(int hours, int minutes, int seconds) { 
                if (hours < 0 || minutes < 0 || seconds < 0) { 
                    throw new IllegalArgumentException(); 
                } 
                int total = seconds + 60 * (minutes + 60 * hours); 
                this.seconds = total % 60; 
                this.minutes = total / 60 % 60; 
                this.hours = total / 3600; 
            } 
         
            public int hours() { 
                return hours; 
            } 
         
            public int minutes() { 
                return minutes; 
            } 
         
            public int seconds() { 
                return seconds; 
            } 
         
            public int totalSeconds() { 
                return seconds + 60 * (minutes + 60 * hours); 
            } 
         
            public String toString() { 
                return hours + ":" + minutes / 10 + minutes % 10 + ":" + 
                    seconds / 10 + seconds % 10; 
            } 
         
            public TimeSpan add(TimeSpan other) { 
                return new TimeSpan(hours + other.hours, minutes + other.minutes, 
                                        seconds + other.seconds); 
            } 
         
            public int compareTo(TimeSpan other) { 
                if (hours != other.hours) 
                    return hours - other.hours; 
                else if (minutes != other.minutes) 
                    return minutes - other.minutes; 
                else 
                    return seconds - other.seconds; 
            } 
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        } 

8. One possible solution appears below. 

 
        public void add(IntTree other) { 
            overallRoot = add(overallRoot, other.overallRoot); 
        } 
     
        private IntTreeNode add(IntTreeNode root1, IntTreeNode root2) { 
            if (root2 != null) { 
                if (root1 == null) 
                    root1 = new IntTreeNode(0); 
                root1.data += root2.data; 
                root1.left = add(root1.left, root2.left); 
                root1.right = add(root1.right, root2.right); 
            } 
            return root1; 
        } 

 

9. One possible solution appears below. 

 
        public void rearrange() { 
            if (front != null && front.next != null) { 
                ListNode current = front.next; 
                while (current != null && current.next != null) { 
                    ListNode temp = current.next; 
                    current.next = current.next.next; 
                    temp.next = front; 
                    front = temp; 
                    current = current.next; 
                } 
            } 
        } 


