
Adam Blank Spring 2015Lecture 8

CSE
143

Computer Programming II

CSE 143: Computer Programming II

Linked Lists I

Outline

1 Get more familiar with ListNodes

2 Learn how to run through the values of a LinkedList

3 Learn how LinkedIntList is implemented

4 Learn about the different cases to deal with for LinkedLists

Drawings 1

Does That Make Sense? 2

Quick Note: When I say “does that make sense?”. . .

If it does make sense, yell “yes”

Otherwise, say nothing.

Outline

1 Get more familiar with ListNodes

2 Learn how to run through the values of a LinkedList

3 Learn how LinkedIntList is implemented

4 Learn about the different cases to deal with for LinkedLists

Another ListNode Example 3

Before:

1 2 3 4
0 1 2 3

list
4

list2
5

After:

1 2 4 3
0 1 2 3

list
4

list2
5

How many ListNodes are there in the before picture?

There are FOUR. Each box is a ListNode.

How many references to ListNodes are there?

There are SIX. Every arrow is a reference to a ListNode.

Another ListNode Example (Solution) 4

Before:

1 2 3 4
0 1 2 3

list
4

list2
5

After:

1 2 4 3
0 1 2 3

list
4

list2
5

1 list.next.next = list2.next
2 list2.next.next = list2;
3 list2.next = null;

Outline

1 Get more familiar with ListNodes

2 Learn how to run through the values of a LinkedList

3 Learn how LinkedIntList is implemented

4 Learn about the different cases to deal with for LinkedLists

Printing a LinkedList 5

1 2 3

list

Printing a LinkedList Manually
1 System.out.println(list.data);
2 System.out.println(list.next.data);
3 System.out.println(list.next.next.data);

Now, note that we can use a variable to keep track of where we are:

1 System.out.println(list.data);
1 2 3

list

2 list = list.next;
1 2 3

list

3 System.out.println(list.data);
1 2 3

list

4 list = list.next;
1 2 3

list

5 System.out.println(list.data);
1 2 3

list

6 list = list.next;
1 2 3

list

Printing a LinkedList: Better Version 6

What if our list has 1000 nodes? That would be horrible to write.

1 2 . . . 1000

list

Printing a BIG LinkedList
1 while (list != null) {
2 System.out.println(list.data);
3 list = list.next;
4 }

But that destroys the list; so, use a temporary variable instead:

Printing a BIG LinkedList Correctly
1 ListNode current = list
2 while (current != null) {
3 System.out.println(current.data);
4 current = current.next;
5 }

LinkedList vs. ArrayList 7

We can use for loops in a similar way to with ArrayLists to run
through LinkedLists!

Traversing an ArrayList
for (int i = 0; i < arrayList.size(); i++) {

System.out.println(arrayList.get(i));
}

Traversing an LinkedList
for (ListNode current = linkedList; current != null; current = current.next) {

System.out.println(current.data);
}

Description ArrayList Code LinkedList Code
Go to front of list int i = 0; ListNode current = list;
Test for more elements i < list.size() current != null
Current value list.get(i) current.data
Go to next element i++; current = current.next;

Outline

1 Get more familiar with ListNodes

2 Learn how to run through the values of a LinkedList

3 Learn how LinkedIntList is implemented

4 Learn about the different cases to deal with for LinkedLists

LinkedIntList 8

No generics (only stores ints)

Fewer methods: add(value), add(index, value), get(index),
set(index, value), size(), isEmpty(), remove(index),
indexOf(value), contains(value), toString()

This is the same idea as when we implemented ArrayIntList!

LinkedIntList Fields 9

What fields does our LinkedIntList need?
A reference to the front of the list

1 2 3 . . .

front

LinkedIntList v1
1 public class LinkedIntList {
2 private ListNode front;
3
4 public LinkedIntList() {

5 front = null;

front

6 }
7
8 ...
9 }

LinkedIntList toString() 10

Buggy toString()
public String toString() {

String result = "[";

ListNode current = this.front;
while (current != null) {

result += current.data + ", ";
current = current.next;

}

return result + "]";
}

Our toString() puts a trailing comma. Fix it by stopping one early:
Fixed toString()
public String toString() {

String result = "[";

ListNode current = this.front;
while (current != null && current.next != null) {

result += current.data + ", ";
current = current.next;

}
if (current != null) {

result += current.data;
}

return result + "]";
}

Outline

1 Get more familiar with ListNodes

2 Learn how to run through the values of a LinkedList

3 Learn how LinkedIntList is implemented

4 Learn about the different cases to deal with for LinkedLists

Modifying LinkedLists 11

Writing a LinkedList Method
1 Identify cases to consider. . .

Front/Empty
Middle
End

2 Draw pictures for each case
3 Write each case separately

1 2 3 . . . 9 10 11 . . . 42

front middle end

LinkedIntList add() (Empty Case) 12

Cases to consider:
Add to empty list
Add to non-empty list

Add To An Empty List
What does an empty list look like?

front

1 public void add(int value) {
2 /* If the list is empty... */
3 if (this.front == null) {
4 this.front = new ListNode(value);

5 value

front

6 }
7 /* Other Cases ... */
8 }

LinkedIntList add() (Non-empty Case) 13

Add To A Non-Empty List
Consider a non-empty list:

1 2 3 . . . 100

front

1 /* Idea: We want to change the red arrow.
2 Loop until we’re at the last node. */
3 ListNode current = this.front;

4 1 2 3 . . . 100

front current

5 while (current != null) {
6 current = current.next;
7 }

8 1 2 3 . . . 100

front current

9 current = new ListNode(value);

10 1 2 3 . . . 100 value

front current

LinkedIntList add() (Non-empty Case) 14

Add To A Non-Empty List (Fixed)
Consider a non-empty list:

1 2 3 . . . 100

front

1 /* Idea: We want to change the red arrow.
2 Loop until we’re at the node before the last node */
3 ListNode current = this.front;

4 1 2 3 . . . 100

front current

5 while (current.next != null) {
6 current = current.next;
7 }

8 1 2 3 . . . 100

front current

9 current.next = new ListNode(value);

10 1 2 3 . . . 100 value

front current

Working with LinkedLists 15

There are only two ways to modify a LinkedList:

Change front

1 2 3

front

. . .changing front. . .
1 2 3

front

([1,2,3]; . . .changing front. . . [2,3])

Change current.next for some ListNode, current

1 2 3

front

. . .changing .next. . .

1 2 3

front

([1,2,3]; . . .changing .next. . . [1,3])

Settting “current” does NOTHING!

LinkedIntList get() 16

1 // pre: 0 <= index < size
2 // post: Returns the value in the list at index
3 public int get(int index) {
4 ListNode current = front;

5 0 1 . . . i . . . n

front current

6 for (int i = 0; i < index; i++) {
7 current = current.next;
8 }

9 0 1 . . . i . . . n

front current

10 return current.data;
11 }

Some LinkedList Tips! 17

Be able to deal with before-and-after ListNode pictures

Know how to loop through a LinkedList
Use a while loop.
Don’t forget to create a ListNode current variable so we don’t
destroy the original list.
Don’t forget to update the current variable.

Understand differences and similiarities between ArrayList and
LinkedList

They both have the same functionality (add,remove, etc.)
But they’re implemented differently (array vs. ListNodes)

With LinkedLists, you often have to stop one node before the
one you want.

DO NOT start coding LinkedList problems without drawing
pictures first.

	Get more familiar with ListNodes
	Learn how to run through the values of a LinkedList
	Learn how LinkedIntList is implemented
	Learn about the different cases to deal with for LinkedLists

