
CSE 143: Computer Programming II Spring 2015

Final Review Adam Blank

Studying
Do many questions on Practice-It! First, write your solution down on paper. Then, debug it by
hand. Finally, type it into Practice-It! to see what you got wrong.

Question Types
The following types of questions will appear on the exam

Binary Search Tree Insertion
Given a set of values, add them to a binary search tree.

Binary Tree Traversal
Perform traversals in the three standard orders on a tree.

Polymorphism Mystery
Given a set of classes with inheritance relationships, a set of variables declared using those classes, and a
set of method calls made on those variables, determine the output.

Just like the
lecture/section.

Collections Mystery
Given some collections code (it will involve a map), write the output.

Comparable Programming
Write a complete class and make it Comparable based on a given set of comparison criteria.

No inheritence
in this question.

(Easier) Binary Tree Programming
Add a method to the IntTree class from lecture.

This would be
using the tree

(Harder) Binary Tree Programming
Add a method to the IntTree class from lecture

Modifying or
Building a tree

Linked List Programming
Add a method to the LinkedIntList class from lecture.

Make sure
you are com-
fortable with
LinkedLists!

Untested Topics
The following topics will definitely not appear on the exam

2-D arrays Detailed Knowledge of Big-Oh Searching and Sorting
Algorithms

Recursive Backtracking Catching Exceptions Priority Queues

Huffman Coding IO Streams Abstract/Inner Classes

Hashing Implementing Iterators Implementing a “generic” class

Programming with inheritance Writing an interface

1



Linked Lists
Write Don’t forget to

read the damn
question. . .

a method called moveSecondToLastToFront that rearranges the order of a list of integers so that
the second to last element of the list appears at the front. For example, if a variable called list stores
these values:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

and you make the call list.moveSecondToLastToFront(), the list should be the following:

[8, 0, 1, 2, 3, 4, 5, 6, 7, 9]

If the list has fewer than two elements, it should be unchanged by a call to moveSecondToLastToFront.
You are writing a method that will become part of the LinkedIntList class. and to put it in

the class.
NO STATIC

You may define private
helper methods to solve this problem, but, otherwise, you may not assume that any particular methods
are available.

Most questions
will disallow
extra structures.
Pay attention
to this!

You are allowed to define your own variables of type ListNode, but you may not construct any new nodes,
and you may not use any auxiliary data structure to solve this problem (no array, ArrayList, stack, queue,
String, etc). You also may not change any data fields of the nodes. You MUST solve this problem by
rearranging the links of the list. Your solution must run in O(n) time where n is the length of the list.

public class ListNode {
public final int data; // data stored in this node
public ListNode next; // link to next node in the list
public ListNode(int data) { ... }
public ListNode(int data, ListNode next) { ... }

}
public class LinkedIntList {

private ListNode front;

}

2



Binary Trees
Write a method called specialSumTree for a binary tree of integers. Figure out the

return type.
And make a
private method.
And. . . read the
question

The method should return the sum
of all the integers in the tree augmented in the following way:

• Even numbers should be counted normally

• Odd numbers should be counted twice

For example, if a variable tree stores a reference to the following tree: Did you draw
any pictures
on the last
question? If
not, you’re
doing it wrong.
:(

1

2

3 6

4

5

then the call tree.specialSumTree() should return 1 + 1 + 2 + 3 + 3 + 6 + 4 + 5 + 5 = 30.

You are writing a public method for a binary tree class defined as follows: Did you draw
pictures for
THIS question
yet? C’mon. . .

You may define private helper methods to solve this problem, but, otherwise, you may not call any other
methods of the class. You may not define any auxiliary data structures to solve this problem.

public class IntTreeNode {
public final int data; // data stored in this node
public IntTreeNode left; // reference to left subtree
public IntTreeNode right; // reference to right subtree
public IntTreeNode(int data) { ... }
public IntTreeNode(int data, IntTreeNode left) { ... }
public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) { ... }

}
public class IntTree {

private IntTreeNode root;

}

3



Binary Trees
Write a method called makeEvenTree for a binary tree of integers. The method should replace all the odd
values in the tree with their twice their value. When we draw

you a picture,
make sure you
understand it.

For example, if a variable tree stores a reference to the
following tree:

1

2

3 6

4

5

Be lazy. Use
simple exam-
ples. Empty
tree? Tree
with ONE
node. . .Maybe
three nodes if
you’re feeling
adventurous.

then, after the call tree.makeEvenTree(), tree should store a reference to the following tree:

2

2

6 6

4

10

You are writing a public method for a binary tree class defined as follows:
You may and by “may”,

we mean,
you probably
should. . .

define private helper methods to solve this problem, but, otherwise, you may not call any other
methods of the class. You may not define any auxiliary data structures to solve this problem.

public class IntTreeNode {
public final int data; // data stored in this node
public IntTreeNode left; // reference to left subtree
public IntTreeNode right; // reference to right subtree
public IntTreeNode(int data) { ... }
public IntTreeNode(int data, IntTreeNode left) { ... }
public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) { ... }

}
public class IntTree {

private IntTreeNode root;

}

4


