
CSE 143: Computer Programming II Spring 2015
Practice Midterm Exam Solutions

Name: Sample Solutions

ID #: 1234567

TA: The Best Section: A9

INSTRUCTIONS:

• You have 50 minutes to complete the exam.

• You will receive a deduction if you keep working after the instructor calls for papers.

• This exam is closed-book and closed-notes. You may not use any computing devices including
calculators.

• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.

• Do not abbreviate code, such as “ditto” marks or dot-dot-dot (“. . . ”) marks. The only ab-
breviations that are allowed for this exam are: S.o.p for System.out.print and S.o.pln for
System.out.println.

• You do not need to write import statements in your code.

• You may not use scratch paper on this exam. If you need extra space, use the back of a page.

• If you enter the room, you must turn in an exam before leaving the room.

• You must show your Student ID to a TA or instructor for your exam to be accepted.

• If you get stuck on a problem, move on and come back to it later.

Problem Points Score Problem Points Score

1 14 4 20

2 16 5 16

3 14 6 20

Σ 100

Page 1 of 8

Mechanical Missions.
This section tests whether you are able to trace through code of various types in the same
way a computer would.

1. Recursive Tracing [14 points]

1 public static int mystery(int n, int m) {
2 if (n == 0 || m == 0) {
3 return 0;
4 }
5 else if (n % 10 == m % 10) {
6 return 1 + mystery(n / 10, m / 10);
7 }
8 else {
9 return mystery(n / 10, m / 10);

10 }
11 }

For each of the following, fill in the value returned when the given mystery method call is run.

mystery Call Value Returned

(a) mystery(18, 0) 0

(b) mystery(8, 18) 1

(c) mystery(25, 21) 1

(d) mystery(305, 315) 2

(e) mystery(20734, 1724) 2

Page 2 of 8

2. ListNode Before & After [16 points]
Your task in this question is to write code to turn the “before” picture into the “after” picture. You may
not change any existing node’s data value. You may not construct any new nodes. In each part, you may
declare up to two new variables of type ListNode. Recall the ListNode class from lecture:

1 public class ListNode {
2 public final int data;
3 public ListNode next;
4
5 public ListNode(int data) { ... }
6 public ListNode(int data, ListNode next) { ... }
7 }

Before & After Your Code

(a)

Before: 1 2 3

list1 list2

After: 2 3

list1

1

list2

list2 = list1;
list1 = list1.next;
list2.next = null;

(b)

Before: 1 2 3

list1 list2

After: 1 3

list1

2

list2

list2 = list1.next;
list1.next = list1.next.next;
list2.next = null;

(c)

Before: 1 2

list1

3 4

list2

After: 3 2 1

list1

4

list2

ListNode temp = list2;
list2 = list2.next;
temp.next = list1.next;
temp.next.next = list1;
list1 = temp;
list1.next.next.next = null;

(d)

Before: 1 2 3

list1

4 5

list2

After: 2 5 3

list1

4 1

list2

list2.next.next = list1.next.next;
list1.next.next = list2.next;
list2.next = list1;
list1 = list1.next;
list2.next.next = null;

Page 3 of 8

Programming Pursuits.
This section tests whether you synthesized various topics well enough to write novel programs
using those topics.

3. Seven is the Most Random Number! [14 points]
Add a method moreSevens to the ArrayIntList class that takes an integer as an argument and replaces
all occurences of that integer with the number 7. If there are none of the provided integer in the list, it
should remain unchanged.

Example Output

Before list.moreSevens(3) After list.moreSevens(3)

[1, 3, 2, 7] [1, 7, 2, 7]
[2, 2, 2, 2] [2, 2, 2, 2]
[3, 1, 3, 1] [7, 1, 7, 1]

Implementation Restrictions
• You may not call any other methods on the ArrayIntList object (e.g., add, remove)

• You may not use a foreach loop on the ArrayIntList.

• You may not use any other data structures such as arrays, lists, queues, etc.

• Your solution should run in O(n) time, where n is the number of elements in the list.

public class ArrayIntList {
private int size;
private int[] data;

// Write Your Solution Here

Solution:
1 public void moreSevens(int n) {
2 for (int i = 0; i < this.size; i++) {
3 if (this.data[i] == n) {
4 this.data[i] = 7;
5 }
6 }
7 }

}

Page 4 of 8

4. r-e-c-u-r-s-i-o-n [20 points]
Write a recursive method called separate that takes a String as a parameter and returns a new string
in which all the characters are lowercase and separated by dashes.

Example Output

Method Call Return Value
separate("hEllO") "h-e-l-l-o"
separate("OHNOES") "o-h-n-o-e-s"

separate("Computer") "c-o-m-p-u-t-e-r"

Implementation Restrictions
• You must use recursion.

• You may only use the String methods on the cheatsheet.

Solution:
1 public static String separate(String s) {
2 if (s.length() < 2) {
3 return s.toLowerCase();
4 }
5 else {
6 return Character.toLowerCase(s.charAt(0)) + "−" + separate(s.substring(1));
7 }
8 }

Page 5 of 8

5. Come Forward and Address Me! [16 points]
Write a method called countOfAddressesByPerson that takes a Map of addresses (Strings) to names
(Strings) as a parameter and returns another map that associates each name with the number of
addresses recorded for that person. The map returned by your method should be ordered alphabetically.

Example Output

Input Map Return Value
{} {}

{"123 No St"="Allison", "CSE444"="Adam", "Tahiti"="Adam"} {"Adam"=2, "Allison"=1}

Implementation Restrictions
• You may assume that the map passed is not null (and that no key or value in the map is null).

• Your method should not modify the map passed as a parameter.

• You may not create and structures other than the ones described above.

• Your method should be reasonably efficient.

Solution:
1 public static Map<String, Integer> countOfAddressesByPerson(Map<String, String> addresses) {
2 // Count the addresses for each person
3 Map<String, Integer> m = new TreeMap<String, Integer>();
4 for (String addr : addresses.keySet()) {
5 String name = addresses.get(addr);
6 if (!m.containsKey(name)) {
7 m.put(name, 0);
8 }
9 m.put(name, m.get(name) + 1);

10 }
11 return m;
12 }

Page 6 of 8

6. ZYXWVUT, Now I Know My ABCs. . . [20 points]
Write a method isReverseAlphabetical that takes a Stack of chars as a parameter and returns true
when the stack is in reverse alphabetical order (and false otherwise). Reverse alphabetical order means
that no characters are missing (and there are no repeats) between the top and bottom.

Example Output

stack1

↓↑

‘c’

‘b’

‘a’

isReverseAlphabetical(stack1)−−−−−−−−−−−−−−−−−−−→ true

stack2

↓↑

‘s’

‘r’

‘q’

isReverseAlphabetical(stack2)−−−−−−−−−−−−−−−−−−−→ true

stack3

↓↑

‘b’

‘c’

isReverseAlphabetical(stack3)−−−−−−−−−−−−−−−−−−−→ false

stack4

↓↑

‘s’

‘q’

isReverseAlphabetical(stack4)−−−−−−−−−−−−−−−−−−−→ false

Implementation Restrictions
• You may assume any input stack with fewer than two letters is reverse alphabetical.

• You may assume the input stack only contains lowercase alphabetic letters.

• When your method returns, the input stack must be unchanged.

• You may create at most one queue and no other data structures.

• You may not use recursion to solve this problem.

• Your solution must run in O(n) time, where n is the size of the stack.

Write Your Answer On The Next Page

Page 7 of 8

This page left intentionally almost Adam.

Solution:
1 public static boolean isReverseAlphabetical(Stack<Character> s) {
2 if (s.size() < 2) {
3 return true;
4 }
5
6 boolean sorted = true;
7 char prev = s.pop();
8 Queue<Character> backup = new FIFOQueue<Character>();
9 backup.enqueue(prev);

10 while (!s.isEmpty()) {
11 char curr = s.pop();
12 backup.enqueue(curr);
13 if (prev − 1 != curr) {
14 sorted = false;
15 }
16 prev = curr;
17 }
18
19 while (!backup.isEmpty()) {
20 s.push(backup.dequeue());
21 }
22
23 while (!s.isEmpty()) {
24 backup.enqueue(s.pop());
25 }
26
27 while (!backup.isEmpty()) {
28 s.push(backup.dequeue());
29 }
30
31 return sorted;
32 }

Page 8 of 8

