
CSE 143 Sample Final Exam #5

1. Inheritance and Polymorphism.
Consider the following classes 
(System.out.println has been 
abbreviated as S.o.pln):

public class Blue extends Green {
    public void one() {
        System.out.println("Blue 1");
        super.one();
    }
}

public class Red extends Yellow {
    public void one() {
        super.one();
        System.out.println("Red 1");
    }
    
    public void two() {
        System.out.println("Red 2");
        super.two();
    }
}

public class Yellow extends Blue {
    public void two() {
        System.out.println("Yellow 2");
    }

    public void three() {
        two();
        System.out.println("Yellow 3");
    }
}

public class Green {
    public void one() {
        System.out.println("Green 1");
    }

    public void three() {
        System.out.println("Green 3");
    }
}

The following variables are defined:
    Green var1 = new Blue();
    Green var2 = new Red();
    Blue var3 = new Yellow();
    Object var4 = new Green();

In the table below, indicate in the right-hand column the output 
produced  by  the  statement  in  the  left-hand  column.   If  the 
statement  produces more  than one line of output,  indicate  the 
line breaks with slashes as in "a / b / c" to indicate three lines of 
output  with  "a"  followed  by  "b"  followed  by  "c".   If  the 
statement causes an error, fill in the right-hand column with the 
phrase "error" to indicate this.

Statement

var1.one();
var1.two();
var1.three();
var2.one();
var2.two();
var2.three();
var3.two();
var3.three();
var4.one();
((Blue) var1).one();
((Yellow) var1).two();
((Red) var2).three();
((Yellow) var2).two();
((Green) var4).three();
((Yellow) var4).two(); 

Output

________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________
________________________



2. Inheritance and Comparable.  You have been asked to extend a pre-existing class Ticket that represents 
a ticket to attend an on-campus event. A ticket has a price and also stores how many days early the ticket  
was bought (how many days before its event takes place).  Some tickets have "promotion codes" that can 
allow special access and benefits for the ticket holder. The Ticket class includes the following members:

Member Description
private double price
private int daysEarly
private String promotionCode

private data of each ticket

public Ticket(double price, int 
daysEarly)

constructs a ticket with the given price, purchased the 
given number of days early, with no promotion code

public int getDaysEarly() returns how many days early the ticket was bought
public double getPrice() returns the ticket's price
public String getPromotionCode() returns the ticket's promotion code ("" if none)
public void setPromotionCode(String 
code)

sets the ticket's promotion code to the given value 
(throws an exception if null is passed)

public String toString() returns a string representation of the ticket

You are to  define a new class called  StudentTicket that extends  Ticket through inheritance.  A 
StudentTicket should behave like a Ticket except for the following differences:

• Student tickets are always bought by the campus ticket sales agency, two weeks (14 days) ahead of the 
event.
• Students always get a 1/2 price discount off the initial price of any ticket to any event.
• Honor students get an additional $5 off the price after the 1/2 discount, down to a minimum cost of $0 
(free).
• Student tickets have special promotion codes.  Any promotion code that is set on a student ticket should 
be modified to have the suffix " (student)" attached.  For example, if the client sets the promotion code 
to  "KEXP  call-in  winner",  a  student  ticket  should  actually  store  "KEXP  call-in  winner 
(student)".

You should provide the same methods as the superclass, as well as the following new behavior.
Constructor/Method Description

public StudentTicket(double price, boolean honors) constructs a student ticket with the 
given base (non-discounted) price, 
possibly for an honor student

public boolean isHonorStudent() returns true if ticket is for an honor 
student

Note that  some of the existing behaviors  from  Ticket should behave differently on  StudentTicket 
objects, as described previously.

You  must  also  make  StudentTicket objects  comparable  to  each  other  using  the  Comparable 
interface.  StudentTickets are compared by price, breaking ties by promotion code.  In other words, a 
StudentTicket object with a lower price is considered to be "less than" one with a higher price.  If two 
tickets have the same price, the one whose promotion code comes first in alphabetical order is considered 
"less."  (You should compare the strings as-is and not alter their casing, spacing, etc.)  If the two objects  
have the same price and promotion code, they are considered to be "equal."

The majority of your grade comes from implementing the correct behavior.  Part of your grade also comes 
from appropriately utilizing the behavior you have inherited from the superclass and not re-implementing 
behavior that already works properly in the superclass.



3. Linked List Programming.  Write a method trimEnds that could be added to the LinkedIntList class 
from lecture and section.  The method accepts an integer parameter k and removes k elements from the front 
of the list and k elements from the back of the list.  Suppose a LinkedIntList variable list stores the 
following values:

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
The call list.trimEnds(3); would change the list to store the following elements:

[40, 50, 60, 70, 80]
If we followed this by a second call of list.trimEnds(1); , the list would store the following elements:

[50, 60, 70]
If  the  list  is  not  large  enough  to  remove  k elements  from  each  side,  throw  an 
IllegalArgumentException.   If the list  contains exactly 2k elements,  it  should become empty as a 
result of the call.  If k is 0 or negative, the list should remain unchanged.

For full credit, obey the following restrictions in your solution:

• The method should run in no worse than O(N) time, where N is the length of the list.
o (You can make more than one pass over the list, but you may not make k or N passes over it.)

• Do not call any methods of the linked list class to solve this problem.
o (Note: the list does not have a size field, and you are not supposed to call its size method.)

• Do not use auxiliary data structures such as arrays, ArrayList, Queue, String, etc.
• Do not modify the  data field of any nodes; you must solve the problem by changing the links 

between nodes.
• You may not create new ListNode objects, though you may create as many ListNode variables as 

you like.

Assume that you are using the LinkedIntList and ListNode class as defined in lecture and section:
public class LinkedIntList {
    private ListNode front;
    methods
}
public class ListNode {
    public int data;       // data stored in this node
    public ListNode next;  // a link to the next node in the list
    public ListNode() { ... }
    public ListNode(int data) { ... }
    public ListNode(int data, ListNode next) { ... }
}



4. Searching and Sorting.

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows:
// index          0   1   2   3   4   5   6   7   8   9  10  11  12  13  14
int[] numbers = {-5, -1,  0,  3,  9, 14, 19, 24, 33, 41, 56, 62, 70, 88, 
99};

int index = binarySearch(numbers, 37);
Write the indexes of the elements that would be examined by the binary search (the  mid values in our 
algorithm's code) and write the value that would be returned from the search.  Assume that we are using the 
binary search algorithm shown in lecture and section.

• Indexes examined: ___________________________________________________________

• Value Returned: __________________________

(b) Write the elements of the array below after each of the first 3 passes of the outermost loop of a selection 
sort.
int[] numbers = {22, 88, 44, 33, 77, 66, 11, 55};
selectionSort(numbers);

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to 
the example trace of merge sort shown in the lecture slides.  Show the sub-arrays that are created by the 
algorithm and show the merging of sub-arrays into larger sorted arrays.
int[] numbers = {22, 88, 44, 33, 77, 66, 11, 55};
mergeSort(numbers);



5. Binary Search Trees.

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order:

• Hill, Barbs, Stat, Dudley, Lopez, Rich, Frye, Nash, Dragic, Amund

(b) Write the elements of your tree above in the order they would be visited by each kind of traversal:

• Pre-order: ____________________________________________________________________

• In-order: ____________________________________________________________________

• Post-order: ____________________________________________________________________



6. Binary Tree Programming.  Write a method flip that could be added to the IntTree class from lecture 
and section.  The method reverses the tree about its left/right axis so that any node that used to be its parent's 
left child will become its parent's right child and vice versa.  The table below shows the result of calling this 
method on an IntTree variable tree.
IntTree tree = new IntTree();
...
tree.flip();

Before Call After Call
                  +----+
                  | 67 |
                  +----+
               /          \
            /                \
       +----+                +----+
       | 80 |                | 52 |
       +----+                +----+
      /      \              /
     /        \            /
 +----+     +----+      +----+
 | 16 |     | 21 |      | 99 |
 +----+     +----+      +----+
             /
            /
         +----+
         | 45 |
         +----+

                  +----+
                  | 67 |
                  +----+
               /          \
            /                \
       +----+                +----+
       | 52 |                | 80 |
       +----+                +----+
             \              /      \
              \            /        \
            +----+     +----+      +----+
            | 99 |     | 21 |      | 16 |
            +----+     +----+      +----+
                            \
                             \
                           +----+
                           | 45 |
                           +----+

If a tree has no nodes or is a leaf, it should not be affected by a call to your method.

You may define private helper methods to solve this problem, but otherwise you may not call any other 
methods of the tree class nor create any data structures such as arrays, lists, etc.  You should not construct 
any new node objects or change the data of any nodes.

Recall the IntTree and IntTreeNode classes as shown in lecture and section:
public class IntTreeNode {
    public int data;          // data stored in this node
    public IntTreeNode left;  // reference to left subtree
    public IntTreeNode right; // reference to right subtree

    public IntTreeNode(int data) { ... }
    public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}
}

public class IntTree {
    private IntTreeNode overallRoot;

    methods
}



7. Binary Tree Programming.  Write a method  hasPath that could be added to the  IntTree class from 
lecture and section.  The method accepts start and end integers as parameters and returns true if a path can 
be found in the tree from start down to end.  In other words, both start and end must be found in the tree, 
and end must be in one of start's subtrees; otherwise the method returns false.  The result is trivially true 
if start and end are the same; in such a case, you are simply checking whether a node exists in the tree with 
that value.  For example, suppose a variable of type IntTree called tree stores the following elements:

tree
                  +----+
                  | 67 |
                  +----+
               /          \
            /                \
       +----+                +----+
       | 80 |                | 52 |
       +----+                +----+
      /      \              /
     /        \            /
 +----+     +----+      +----+
 | 16 |     | 21 |      | 99 |
 +----+     +----+      +----+
             /
            /
         +----+
         | 45 |
         +----+

The table below shows what the state of the tree would be if various calls were made:
Call Result Reason

tree.hasPath(67, 99) true path exists 67 → 52 → 99
tree.hasPath(80, 45) true path exists 80 → 21 → 45
tree.hasPath(67, 67) true node exists with data of 67
tree.hasPath(16, 16) true node exists with data of 16
tree.hasPath(52, 99) true path exists 52 → 99
tree.hasPath(99, 67) false nodes do exist, but in wrong order
tree.hasPath(80, 99) false nodes do exist, but there is no path from 80 to 99
tree.hasPath(67, 100) false end of 100 doesn't exist in the tree
tree.hasPath(-1, 45) false start of -1 doesn't exist in the tree
tree.hasPath(42, 64) false start/end of -1 and 45 both don't exist in the tree

An empty tree does not contain any paths, so if the tree is empty, your method should return false.  You 
should not assume that your tree is a binary search tree (BST); its elements could be stored in any order.

You may define private helper methods to solve this problem, but otherwise you may not call any other 
methods of the class nor create any data structures (arrays, lists, etc.).  You should not construct any new 
node objects or modify the tree in any way in your code.


	CSE 143 Sample Final Exam #5

