
CSE 143
Lecture 25:

I/O Streams; Exceptions;
Inheritance

2

Input and output streams

• stream: an abstraction of a source or target of data

– 8-bit bytes flow to (output) and from (input) streams

• can represent many data sources:

– files on hard disk

– another computer on network

– web page

– input device (keyboard, mouse, etc.)

• represented by java.io classes

– InputStream

– OutputStream

3

Streams and inheritance

• all input streams extend common superclass InputStream;
all output streams extend common superclass OutputStream

– guarantees that all sources of data have the same methods

– provides minimal ability to read/write one byte at a time

4

Input streams

• constructing an input stream:

(various objects also have methods to get streams to read them)

• methods common to all input streams:

Method Description

public int read() throws IOException reads/returns a byte

(-1 if no bytes remain)

public void close() throws IOException stops reading

Constructor

public FileInputStream(String name) throws IOException

public ByteArrayInputStream(byte[] bytes)

public SequenceInputStream(InputStream a, InputStream b)

5

Output streams

• constructing an output stream:

• methods common to all output streams:

Method Description

public void write(int b) throws IOException writes a byte

public void close() throws IOException stops writing
(also flushes)

public void flush() throws IOException forces any writes in
buffers to be written

Constructor

public FileOutputStream(String name) throws IOException

public ByteArrayOutputStream()

public PrintStream(File file)

public PrintStream(String fileName)

6

Bit I/O streams

 Java's input/output streams read/write 1 byte (8 bits) at a time.

 We want to read/write one single bit at a time.

 BitInputStream: Reads one bit at a time from input.

 BitOutputStream: Writes one bit at a time to output.

public BitInputStream(String file) Creates stream to read bits from given file

public int readBit() Reads a single 1 or 0

public void close() Stops reading from the stream

public BitOutputStream(String file) Creates stream to write bits to given file

public void writeBit(int bit) Writes a single bit

public void close() Stops reading from the stream

7

Exercise

• Write a class Downloader with the following behavior:

– public Downloader(String url)

• Initializes the downloader to examine the given URL.

– public void download(String targetFileName)

• Downloads the file from the URL to the given file name on disk.

• Write client program DownloadMain to use Downloader:

URL to download? foo bar

Bad URL! Try again: http://zombo.com/

Target file name: out.html

Contents of out.html:
<html>
<head>
<title>ZOMBO</title>
...
</body>
</html>

8

Reading from the web

– class java.net.URL represents a web page's URL

– we can connect to a URL and read data from that web page

http://www.foo.com:8080/dir1/dir2/readme.txt

protocol host port path file

Method/Constructor Description

public URL(String address)

throws MalformedURLException

creates a URL object
representing the given address

public String getFile(),

getHost(), getPath(),

getProtocol()

public int getPort()

returns various parts of the URL
as strings/integers

public InputStream openStream()

throws IOException

opens a stream for reading data
from the document at this URL

9

I/O and exceptions

• exception: An object representing an error.

– checked exception: One that must be
handled for the program to compile.

• Many I/O tasks throw exceptions.

– Why?

• When you perform I/O, you must either:

– also throw that exception yourself

– catch (handle) the exception

10

Throwing an exception

public type name(params) throws type {

•throws clause: Keywords on a method's header that state that it

may generate an exception.

– Example:

public void processFile(String filename)

throws FileNotFoundException {

"I hereby announce that this method might throw an exception, and I

accept the consequences if it happens."

11

Catching an exception

try {

statement(s);
} catch (type name) {

code to handle the exception
}

– The try code executes. If the given exception occurs, the try block
stops running; it jumps to the catch block and runs that.

try {

Scanner in = new Scanner(new File(filename));

System.out.println(input.nextLine());

} catch (FileNotFoundException e) {

System.out.println("File was not found.");

}

12

Exception inheritance

• All exceptions extend from a common superclass Exception

13

Dealing with an exception

• All exception objects have these methods:

• Some reasonable ways to handle an exception:
– try again; re-prompt user; print a nice error message;

quit the program; do nothing (!)

Method Description

public String getMessage() text describing the error

public String toString() a stack trace of the line
numbers where error occurred

getCause(), getStackTrace(),
printStackTrace()

other methods

14

Inheritance and exceptions

• You can catch a general exception to handle any subclass:

try {

Scanner input = new Scanner(new File("foo"));

System.out.println(input.nextLine());

} catch (Exception e) {

System.out.println("File was not found.");

}

• Similarly, you can state that a method throws any exception:

public void foo() throws Exception { ...

– Are there any disadvantages of doing so?

15

Exceptions and errors

• There are also Errors, which represent serious Java problems.

– Error and Exception have common superclass Throwable.

– You can catch an Error (but you probably shouldn't)

16

Exercise 2

• Write class TallyDownloader to add behavior to Downloader:

– public TallyDownloader(String url)

– public void download(String targetFileName)

• Downloads the file, and also prints the file to the console, and prints the
number of occurrences of each kind of character in the file.

URL to download? http://zombo.com/
<html>
<head>
<title>ZOMBO</title>
<!--Please Visit 15footstick.com our other website. ThankZ -->
...
</body>
</html>
{

=21, =42, !=1, "=18, #=4, %=4, ,=3, -=14, .=10, /=18, 0=15, 1=9,

2=2, 3=1, 4=5, 5=5, 6=4, 7=1, 8=3, 9=2, :=3, ;=1, <=17, ==24,

>=17, ?=1, A=1, B=3, C=2, D=3, E=2, F=19, M=1, O=2, P=3, S=1, T=2,

V=2, Z=2, _=2, a=42, b=13, c=27, d=18, e=47, f=7, g=10, h=28,

i=32, j=2, k=5, l=24, m=21, n=17, o=36, p=12, q=3, r=17, s=24,

t=37, u=8, v=10, w=15, x=5, y=6, z=2}

17

Inheritance

• inheritance: Forming new classes based on existing ones.

– a way to share/reuse code between two or more classes

– superclass: Parent class being extended.

– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

– is-a relationship: Each object of the subclass also "is a(n)" object of the
superclass and can be treated as one.

18

Inheritance syntax

public class name extends superclass {

public class Lawyer extends Employee {

...

}

• override: To replace a superclass's method by writing a new version
of that method in a subclass.

public class Lawyer extends Employee {

// overrides getSalary method in Employee class;

// give Lawyers a $5K raise

public double getSalary() {

return 55000.00;

}

}

19

super keyword

• Subclasses can call inherited methods/constructors with super

super.method(parameters)
super(parameters);

public class Lawyer extends Employee {

public Lawyer(int years) {

super(years); // calls Employee constructor

}

// give Lawyers a $5K raise

public double getSalary() {

double baseSalary = super.getSalary();

return baseSalary + 5000.00;

}

}

– Lawyers now always make $5K more than Employees.

20

Exercise solution
public class TallyDownloader extends Downloader {

public TallyDownloader(String url) throws MalformedURLException {
super(url); // call Downloader constructor

}

// Reads from URL and prints file contents and tally of each char.
public void download(String targetFileName) throws IOException {

super.download(targetFileName);

Map<Character, Integer> counts = new TreeMap<Character, Integer>();
FileInputStream in = new FileInputStream(targetFileName);
while (true) {

int n = in.read();
if (n == -1) {

break;
}
char ch = (char) n;
if (counts.containsKey(ch)) {

counts.put(ch, counts.get(ch) + 1);
} else {

counts.put(ch, 1);
}
System.out.print(ch);

}
in.close();
System.out.println(counts); // print map of char -> int

}
}

21

Exercise solution 2
import java.io.*;
import java.net.*;
import java.util.*;

public class DownloadMain {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("URL to download? ");
String urlString = console.nextLine();

Downloader down = null; // create a tallying downloader;
while (down == null) { // re-prompt the user if this fails

try {
down = new TallyDownloader(urlString);

} catch (MalformedURLException e) {
System.out.print("Bad URL! Try again: ");
urlString = console.nextLine();

}
}

...
}

}

