CSE 143

Lecture 23: quick sort

KDnuggets cartoon
3 2. © 2013 Ted Goff

DATA ScIENCE
[PDEPARTMENT

“I don’t like the look of this.
Searches for gravy and turkey stuffing
are going through the roof !”

o

Quick sort

e quick sort: Orders a list of values by partitioning the list around one
element called a pivot, then sorting each partition.

— invented by British computer scientist C.A.R. Hoare in 1960

e Quick sort is another divide and conquer algorithm:
— Choose one element in the list to be the pivot.

— Divide the elements so that all elements less than the pivot are to its left
and all greater (or equal) are to its right.

— Conquer by applying quick sort (recursively) to both partitions.

e Runtime: O(N log N) average, O(N?) worst case.

— Generally somewhat faster than merge sort.

e

o ——n,,
Quick sort example

index | 0|1 (2|3 |4|5|6|7] 8|09
value | 6523 (81|43 192|39(57|16| 75 | 32| choose pivot=65

32 (2381|143 |92|39|57 (16| 75| 65 | swap pivot (65) to end
32|23(16|43|92|39(57|81|75|65]|swap8l,16
3223|1643 |57|39(92|81| 75 |65]|swap57,92
32|23(16|43 |57|139(92|81| 75|65
32123(16|43 |57 (39|65 (81| 75 |92 | swap pivot back in

recursively quicksort each haw

32 (23|16 |43 |57 |39 | pivot=32 81| 75 | 92 | pivot=81
39|123|16|43 |57 |32 |swaptoend 92 | 75| 81 | swap to end

16 (23|39 |43 |57 |32 |swap 39, 16 75192 | 81 |swap 92,75

16 (23 (32| 43 |57 | 39 | swap 32 back in 751 81 | 92 | swap 81 back in

A

o —n—
Choosing a "pivot”

e The algorithm will work correctly no matter which element you
choose as the pivot.

— A simple implementation can just use the first element.

e But for efficiency, it is better if the pivot divides up the array into
roughly equal partitions.
— What kind of value would be a good pivot? A bad one?

index| O (1 (2|3 (4|5|6|7]|8|9|10(11(12(13|14|15]|16
value | 8 |18 12| -4 |27|30(36|50| 7 [68|91|56| 2 |85|42|98|25

o —n
Choosing a better pivot

e Choosing the first element as the pivot leads to very poor
performance on certain inputs (ascending, descending)

— does not partition the array into roughly-equal size chunks

e Alternative methods of picking a pivot:
— random: Pick a random index from [min .. max]

— median-of-3: look at left/middle/right elements and pick the one with
the medium value of the three:
ea[min], al[(max+min) /2], anda[max]
* better performance than picking random numbers every time
e provides near-optimal runtime for almost all input orderings

index | O |1 2|3 [4]|5|6]|7|8]|9|10111]12|13|14|15]|16
value | 8 (18|91 | -4 127(30|86(50|65|78|5 |56| 2 |25|42|98 |31

e

Stable sorting

e stable sort: One that maintains relative order of "equal" elements.

— important for secondary sorting, e.g.
e sort by name, then sort again by age, then by salary, ...

e All of the N? sorts shown are stable.
— bubble, selection, insertion, shell

e Merge sort is stable.

e Quick sort is not stable.

— The partitioning algorithm can reverse the order of "equal” elements.
— For this reason, Java's Arrays/Collections.sort() use merge sort.

10

L —n—
Unstable sort example

e Suppose you want to sort these points by Y first, then by X:
o [(41 2)/ (5/ 7)/ (31 7)/ (31 1)]

e A stable sort like merge sort would do it this way:
- [(3, 1), (4, 2), (5, 7), (3, 7)1 sort by y
- [(3, 1), (3, 7), (4, 2), (5, 7)1 sort by x
— Note that the relative order of (3, 1) and (3, 7) is maintained.

e Quick sort might leave them in the following state:
- [(3, 1), (4, 2), (5, 1), (3, 7)] sort by
- [(3, 7), (3, 1), (4, 2), (5, 7)] sort by x
— Note that the relative order of (3, 1) and (3, 7) has reversed.

N

11

e

