
CSE 143
Binary Search Trees

reading: 17.3 – 17.4

2

Binary search trees
 binary search tree ("BST"): a binary tree where each non-empty node R

has the following properties:

 elements of R's left subtree contain data "less than" R's data,

 elements of R's right subtree contain data "greater than" R's,

 R's left and right subtrees are also binary search trees.

 BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root
System.out.println(contains(42))

;

3

4

BST examples
 Which of the trees shown are legal binary search trees?

xk

qg

m

e

b 1810

115

8

4

2 7

20

18

42

-7-1

-5

21.38.1

9.61.9

7.2

8

Adding to a BST
 Suppose we want to add new values to the BST below.

 Where should the value 14 be added?

 Where should 3 be added? 7?

 If the tree is empty, where
should a new value be added?

 What is the general algorithm?

1910

115

8

4

2 7

25

22

overall root

14

Change point, version 2
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static void change(Point thePoint) {

thePoint = new Point(3, 4);

}

// answer: (1, 2)

2y1xp

4y3x

15

Changing references
 If a method dereferences a variable (with .) and modifies the object it

refers to, that change will be seen by the caller.

public static void change(Point thePoint) {

thePoint.x = 3; // affects p

thePoint.setY(4); // affects p

 If a method reassigns a variable to refer to a new object, that change will
not affect the variable passed in by the caller.

public static void change(Point thePoint) {

thePoint = new Point(3, 4); // p unchanged

thePoint = null; // p unchanged

 What if we want to make the variable passed in become null?

16

Change point, version 3
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;

}

// answer: (1, 2)

2y1xp

4y3x

17

Change point, version 4
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

p = change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;

}

// answer: (3, 4)

2y1xp

4y3x

18

x = change(x);
 If you want to write a method that can change the object that a variable

refers to, you must do three things:

1. pass in the original state of the object to the method

2. return the new (possibly changed) object from the method

3. re-assign the caller's variable to store the returned result

p = change(p); // in main

public static Point change(Point thePoint) {

thePoint = new Point(99, -1);

return thePoint;

 We call this general algorithmic pattern x = change(x);

 also seen with strings: s = s.toUpperCase();

20

Applying x = change(x)
 Methods that modify a tree should have the following pattern:

 input (parameter): old state of the node

 output (return): new state of the node

 In order to actually change the tree, you must reassign:

node = change(node, parameters);

node.left = change(node.left, parameters);

node.right = change(node.right, parameters);

overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return

