
CSE 143
read: 12.5

Lecture 18: recursive backtracking

2

Backtracking strategies
 When solving a backtracking problem, ask these questions:

 What are the "choices" in this problem?

 What is the "base case"? (How do I know when I'm out of choices?)

 How do I "make" a choice?

 Do I need to create additional variables to remember my choices?

 Do I need to modify the values of existing variables?

 How do I explore the rest of the choices?

 Do I need to remove the made choice from the list of choices?

 Once I'm done exploring, what should I do?

 How do I "un-make" a choice?

3

The "8 Queens" problem
 Consider the problem of trying to place 8 queens on a chess board such

that no queen can attack another queen.

 What are the "choices"?

 How do we "make" or
"un-make" a choice?

 How do we know when
to stop?

Q

Q

Q

Q

Q

Q

Q

Q

4

Naive algorithm
 for (each square on board):

 Place a queen there.

 Try to place the rest
of the queens.

 Un-place the queen.

 How large is the
solution space for
this algorithm?

 64 * 63 * 62 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 ...

4

5

6

7

8

5

Better algorithm idea
 Observation: In a working

solution, exactly 1 queen
must appear in each
row and in
each column.

 Redefine a "choice"
to be valid placement
of a queen in a
particular column.

 How large is the
solution space now?

 8 * 8 * 8 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 Q ...

4 ...

5 Q

6

7

8

6

Exercise
 Suppose we have a Board class with these methods:

 Write a method solveQueens that accepts a Board as a parameter
and tries to place 8 queens on it safely.

 Your method should stop exploring if it finds a solution.

Method/Constructor Description

public Board(int size) construct empty board

public boolean isSafe(int row, int column) true if queen can be

safely placed here

public void place(int row, int column) place queen here

public void remove(int row, int column) remove queen from here

public String toString() text display of board

7

Recall: Backtracking
A general pseudo-code algorithm for backtracking problems:

Explore(choices):

 if there are no more choices to make: stop.

 else, for each available choice C:

 Choose C.

 Explore the remaining choices.

 Un-choose C, if necessary. (backtrack!)

8

Exercise solution
// Searches for a solution to the 8 queens problem

// with this board, reporting the first result found.

public static void solveQueens(Board board) {

if (solveQueens(board, 1)) {

System.out.println("One solution is as follows:");

System.out.println(board);

} else {

System.out.println("No solution found.");

}

}

...

9

Exercise solution, cont'd.
// Recursively searches for a solution to 8 queens on this

// board, starting with the given column, returning true if a

// solution is found and storing that solution in the board.

// PRE: queens have been safely placed in columns 1 to (col-1)

public static boolean solveQueens(Board board, int col) {

if (col > board.size()) {

return true; // base case: all columns are placed

} else {

// recursive case: place a queen in this column

for (int row = 1; row <= board.size(); row++) {

if (board.isSafe(row, col)) {

board.place(row, col); // choose

if (explore(board, col + 1)) { // explore

return true; // solution found

}

b.remove(row, col); // un-choose

}

}

return false; // no solution found

}

}

