CSE 143

read: 12.5
Lecture 18: recursive backtracking

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.

HEY! GET BACK
T0 WORK!
Bl

CD e




L s— T e
Backtracking strategies

®* When solving a backtracking problem, ask these questions:

* What are the "choices" in this problem?
 What is the "base case"? (How do | know when I'm out of choices?)

* How do | "make" a choice?
« Dol need to create additional variables to remember my choices?
« Do | need to modify the values of existing variables?

How do | explore the rest of the choices?
« Do | need to remove the made choice from the list of choices?

Once I'm done exploring, what should | do?

How do | "un-make" a choice?




L ss— T e
The "8 Queens” problem

® Consider the problem of trying to place 8 queens on a chess board such
that no queen can attack another queen.

What are the "choices"?

How do we "make" or
"un-make" a choice?

How do we know when
to stop?




L s— T e
Naive algorithm

* for (each square on board):
Place a queen there. 2 geaan g ey

Try to place the rest 1
of the queens.

Un-place the queen.

How large is the
solution space for
this algorithm?

A A R S

o N oo ur A~ W DN




L s— T e
Better algorithm idea

® QObservation: In a working
solution, exactly 1 queen . = 35 b
must appear in each
row and in
each column.

Redefine a "choice"
to be valid placement
of a queenin a
particular column.

How large is the
solution space now?

s IR TR AR

o N oo ur A~ W DN




Exercise
® Suppose we have a Board class with these methods:
Method/Constructor Description
public Board(int size) construct empty board

public boolean isSafe(int row, int column) | true if queen can be
safely placed here

public void place(int row, int column) place queen here
public void remove (int row, 1int column) remove queen from here
public String toString() text display of board

* Write a method solveQueens that accepts a Board as a parameter
and tries to place 8 queens on it safely.

* Your method should stop exploring if it finds a solution.




Cm— e
Recall: Backtracking

A general pseudo-code algorithm for backtracking problems:

Explore(choices):
* if there are no more choices to make: stop.

* else, for each available choice C:
e Choose C.
» Explore the remaining choices.
e Un-choose C, if necessary. (backtrack!)




s ——
Exercise solution

// Searches for a solution to the 8 gqueens problem
e e e e e el
public static void solveQueens (Board board) {
1f (solveQueens (board, 1)) {
System.out.println ("One solution is as follows:");
System.out.println (board) ;
} else {
e E e ey e e M A R A T R A IS o M A R ER YR e T




——
Exercise solution, cont'd.

e B R B B 1 e i e O B L o e L AV e U e e

// board, starting with the given column, returning true if a
e e e e iy i
// PRE: queens have been safely placed in columns 1 to (col-1)
public static boolean solveQueens (Board board, int col) {

S e E e S el e G R R S T e
return true; // base case: all columns are placed
} else {
// recursive case: place a gqueen in this column
Hene b miia e i i w et il A oletoliae Wi vl ot B A Ty v i A A
if (board.isSafe(row, col)) {
board.place (row, col); // choose
if (explore (board, col + 1)) { // explore
returnvbrue; Lol utionround
}
b.remove (row, col); // un-choose
}
}
return false; riime s ltion i found

e 9




