
CSE 143
Lecture 13: Interfaces, Comparable

reading: 9.5 - 9.6, 16.4, 10.2

2

Related classes
Consider classes for shapes with common features:

 Circle (defined by radius r):

area = r 2, perimeter = 2 r

 Rectangle (defined by width w and height h):

area = w h, perimeter = 2w + 2h

 Triangle (defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c),

perimeter = a + b + c

 Every shape has these, but each computes them differently.

r

w

h

a

b

c

3

Interfaces (9.5)
 interface: A list of methods that a class can promise to implement.

 Inheritance gives you an is-a relationship and code sharing.

 A Lawyer can be treated as an Employee and inherits its code.

 Interfaces give you an is-a relationship without code sharing.

 A Rectangle object can be treated as a Shape but inherits no code.

 Analogous to non-programming idea of roles or certifications:

 "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

 "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

4

Interface syntax
public interface name {

public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:
public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}

5

Shape interface
// Describes features common to all shapes.

public interface Shape {

public double area();

public double perimeter();

}

 Saved as Shape.java

 abstract method: A header without an implementation.

 The actual bodies are not specified, because we want to allow each class to
implement the behavior in its own way.

6

Implementing an interface
public class name implements interface {

...
}

 A class can declare that it "implements" an interface.
 The class must contain each method in that interface.

public class Bicycle implements Vehicle {

...
}

(Otherwise it will fail to compile.)
Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape

public class Banana implements Shape {

^

7

Interfaces + polymorphism
 Interfaces benefit the client code author the most.

 They allow polymorphism.
(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);

8

Linked vs. array lists
 We have implemented two collection classes:

 ArrayIntList

 LinkedIntList

 They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

index 0 1 2 3

value 42 -3 17 9

front

data next

42

data next

-3

data next

17

data next

9

9

An IntList interface
// Represents a list of integers.

public interface IntList {

public void add(int value);

public void add(int index, int value);

public int get(int index);

public int indexOf(int value);

public boolean isEmpty();

public void remove(int index);

public void set(int index, int value);

public int size();

}

public class ArrayIntList implements IntList { ...

public class LinkedIntList implements IntList { ...

10

Client code w/ interface
public class ListClient {

public static void main(String[] args) {

IntList list1 = new ArrayIntList();

process(list1);

IntList list2 = new LinkedIntList();

process(list2);

}

public static void process(IntList list) {

list.add(18);

list.add(27);

list.add(93);

System.out.println(list);

list.remove(1);

System.out.println(list);

}

}

11

ADTs as interfaces (11.1)
 abstract data type (ADT): A specification of a collection of data and the

operations that can be performed on it.

 Describes what a collection does, not how it does it.

 Java's collection framework uses interfaces to describe ADTs:

 Collection, Deque, List, Map, Queue, Set

 An ADT can be implemented in multiple ways by classes:

 ArrayList and LinkedList implement List

 HashSet and TreeSet implement Set

 LinkedList , ArrayDeque, etc. implement Queue

 They messed up on Stack; there's no Stack interface, just a class.

12

Using ADT interfaces
When using Java's built-in collection classes:

 It is considered good practice to always declare collection variables using
the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

 Methods that accept a collection as a parameter should also declare the
parameter using the ADT interface type:

public void stutter(List<String> list) {

...

}

The Comparable Interface

reading: 10.2

14

Collections class

Method name Description

binarySearch(list, value) returns the index of the given value in
a sorted list (< 0 if not found)

copy(listTo, listFrom) copies listFrom's elements to listTo

emptyList(), emptyMap(),
emptySet()

returns a read-only collection of the
given type that has no elements

fill(list, value) sets every element in the list to have
the given value

max(collection), min(collection) returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another

reverse(list) reverses the order of a list's elements

shuffle(list) arranges elements into a random order

sort(list) arranges elements into ascending order

15

Ordering and objects
 Can we sort an array of Strings?

 Operators like < and > do not work with String objects.

 But we do think of strings as having an alphabetical ordering.

 natural ordering: Rules governing the relative placement of all values of a
given type.

 comparison function: Code that, when given two values A and B of a given
type, decides their relative ordering:

 A < B, A == B, A > B

16

The compareTo method (10.2)

 The standard way for a Java class to define a comparison function for its
objects is to define a compareTo method.

 Example: in the String class, there is a method:

public int compareTo(String other)

 A call of A.compareTo(B) will return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

17

Using compareTo
 compareTo can be used as a test in an if statement.

String a = "alice";

String b = "bob";

if (a.compareTo(b) < 0) { // true

...

}

Primitives Objects

if (a < b) { ... if (a.compareTo(b) < 0) { ...

if (a <= b) { ... if (a.compareTo(b) <= 0) { ...

if (a == b) { ... if (a.compareTo(b) == 0) { ...

if (a != b) { ... if (a.compareTo(b) != 0) { ...

if (a >= b) { ... if (a.compareTo(b) >= 0) { ...

if (a > b) { ... if (a.compareTo(b) > 0) { ...

18

compareTo and collections
 You can use an array or list of strings with Java's included binarySearch

method because it calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};

int index = Arrays.binarySearch(a, "dan"); // 3

 Java's TreeSet/Map use compareTo internally for ordering.

 A call to your compareTo method should return:

a value < 0 if this object is "before" the other object,

a value > 0 if this object is "after" the other object,

or 0 if this object is "equal" to the other.

19

Comparable (10.2)
public interface Comparable<E> {

public int compareTo(E other);

}

 A class can implement the Comparable interface to define a natural
ordering function for its objects.

 A call to your compareTo method should return:

a value < 0 if this object is "before" the other object,

a value > 0 if this object is "after" the other object,

or 0 if this object is "equal" to the other.

 If you want multiple orderings, use a Comparator instead (see Ch. 13.1)

20

Comparable template
public class name implements Comparable<name> {

...

public int compareTo(name other) {

...

}

}

21

compareTo tricks

 delegation trick - If your object's fields are comparable (such as strings),
use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"

public int compareTo(Employee other) {

return name.compareTo(other.getName());

}

 toString trick - If your object's toString representation is related to
the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"

public int compareTo(Date other) {

return toString().compareTo(other.toString());

}

22

compareTo tricks

 subtraction trick - Subtracting related values produces the right result for
what you want compareTo to return:

// sort by x and break ties by y

public int compareTo(Point other) {

if (x != other.x) {

return x - other.x; // different x

} else {

return y - other.y; // same x; compare y

}

}

 The idea:

 if x > other.x, then x - other.x > 0

 if x < other.x, then x - other.x < 0

 if x == other.x, then x - other.x == 0

 NOTE: This trick doesn't work for doubles (but see Math.signum)

