
CSE 143
Lecture 11: Sets and Maps

reading: 11.2 - 11.3

2

Sentence generation
<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp><adj>

childgreen

<adj>

wonderful

3

Exercise
 Write a program that counts the number of unique words in a large text

file (say, Moby Dick or the King James Bible).

 Store the words in a collection and report the # of unique words.

 Once you've created this collection, allow the user to search it to see whether
various words appear in the text file.

 What collection is appropriate for this problem?

4

Sets (11.2)
 set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:

 add, remove, search (contains)

 We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

5

Set implementation
 in Java, sets are represented by Set type in java.util

 Set is implemented by HashSet and TreeSet classes

 HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

 TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

 LinkedHashSet: O(1) but stores in order of insertion;
slightly slower than HashSet because of extra info stored

6

Set methods
List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

 can construct an empty set, or one based on a given collection

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

7

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

 Provides a clean syntax for looping over the elements of a Set, List,
array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

 needed because sets have no indexes; can't get element i

8

Exercise
 Write a program to count the number of occurrences of each unique word

in a large text file (e.g. Moby Dick).

 Allow the user to type a word and report how many times that word appeared
in the book.

 Report all words that appeared in the book at least 500 times, in alphabetical
order.

 What collection is appropriate for this problem?

9

Maps (11.3)
 map: Holds a set of unique keys and a collection of values, where each key

is associated with one value.

 a.k.a. "dictionary", "associative array", "hash"

 basic map operations:

 put(key, value): Adds a
mapping from a key to
a value.

 get(key): Retrieves the
value mapped to the key.

 remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

10

Map implementation
 in Java, maps are represented by Map type in java.util

 Map is implemented by the HashMap and TreeMap classes

 HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

 TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

 LinkedHashMap: O(1) ; keys are stored in order of insertion

 A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

11

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

13

Maps and tallying
 a map can be thought of as generalization of a tallying array

 the "index" (key) doesn't have to be an int

 count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent

 count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

14

keySet and values
 keySet method returns a Set of all keys in the map

 can loop over the keys in a foreach loop

 can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Marty", 19);

ages.put("Geneva", 2); // ages.keySet() returns Set<String>

ages.put("Vicki", 57);

for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(name); // Marty -> 19

System.out.println(name + " -> " + age); // Vicki -> 57

}

 values method returns a collection of all values in the map

 can loop over the values in a foreach loop

 no easy way to get from a value to its associated key(s)

Languages and Grammars

16

Languages and grammars
 (formal) language: A set of words or symbols.

 grammar: A description of a language that describes which sequences of
symbols are allowed in that language.

 describes language syntax (rules) but not semantics (meaning)

 can be used to generate strings from a language, or to determine whether a
given string belongs to a given language

17

Backus-Naur (BNF)
 Backus-Naur Form (BNF): A syntax for describing language grammars in

terms of transformation rules, of the form:

<symbol> ::= <expression> | <expression> ... | <expression>

 terminal: A fundamental symbol of the language.

 non-terminal: A high-level symbol describing language syntax, which can be
transformed into other non-terminal or terminal symbol(s) based on the rules
of the grammar.

 developed by two Turing-award-winning computer scientists in 1960 to
describe their new ALGOL programming language

22

Grammar, final version
<s>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=the|a

<adjp>::=<adj>|<adj> <adjp>

<adj>::=big|fat|green|wonderful|faulty|subliminal

<n>::=dog|cat|man|university|father|mother|child

<pn>::=John|Jane|Sally|Spot|Fred|Elmo

<vp>::=<tv> <np>|<iv>

<tv>::=hit|honored|kissed|helped

<iv>::=died|collapsed|laughed|wept

 Could this grammar generate the following sentences?

Fred honored the green wonderful child

big Jane wept the fat man fat

 Generate a random sentence using this grammar.

