
CSE 143
Lecture 8: Complex Linked List Code

reading: 16.2 – 16.3

In some languages (C++), -> is used for dereferencing

2

Implementing add (2)
// Inserts the given value at the given index.

public void add(int index, int value) {

...
}

 Exercise: Implement the two-parameter add method.

front =

data next

42

data next

-3

data next

17

element 0 element 1 element 2

3

4

addSorted

 Write a method addSorted that accepts an int as a parameter and
adds it to a sorted list in sorted order.

 Before addSorted(17) :

 After addSorted(17) :

front =
data next

-4

data next

8

data next

22

element 0 element 1 element 2

front =
data next

-4

data next

17

data next

22

element 0 element 2 element 3

data next

8

element 1

5

The common case
 Adding to the middle of a list:

addSorted(17)

 Which references must be changed?

 What sort of loop do we need?

 When should the loop stop?

front =
data next

-4

data next

8

data next

22

element 0 element 1 element 2

6

First attempt
 An incorrect loop:

ListNode current = front;

while (current.data < value) {

current = current.next;

}

 What is wrong with this code?

 The loop stops too late to affect the list in the right way.

front =
data next

-4

data next

8

data next

22

element 0 element 1 element 2

current

9

Another case to handle
 Adding to the end of a list:

addSorted(42)

Exception in thread "main": java.lang.NullPointerException

 Why does our code crash?

 What can we change to fix this case?

front =
data next

-4

data next

8

data next

22

element 0 element 1 element 2

11

Third case to handle
 Adding to the front of a list:

addSorted(-10)

 What will our code do in this case?

 What can we change to fix it?

front =
data next

-4

data next

8

data next

22

element 0 element 1 element 2

13

Fourth case to handle
 Adding to (the front of) an empty list:

addSorted(42)

 What will our code do in this case?

 What can we change to fix it?

front =

15

Common cases
 middle: "typical" case in the middle of an existing list

 back: special case at the back of an existing list

 front: special case at the front of an existing list

 empty: special case of an empty list

16

Other list features
 Add the following methods to the LinkedIntList:

 size

 isEmpty

 clear

 toString

 indexOf

 contains

 remove

 Add preconditions and exception tests to appropriate methods.

17

Interfaces
 interface: A list of methods that a class can promise to implement.

 Inheritance gives you an is-a relationship and code sharing.

 A Lawyer can be treated as an Employee and inherits its code.

 Interfaces give you an is-a relationship without code sharing.

 A Rectangle object can be treated as a Shape but inherits no code.

 Always declare variables using the interface type.

List<String> list = new ArrayList<String>();

