## CSE 143

Lecture 5: complexity reading: 13.1-13.2

http://www.alexsweet.co.uk/comics.php?comic=2

## Interfaces

- interface: A list of methods that a class can promise to implement.
- Inheritance gives you an is-a relationship and code sharing.
- A Lawyer can be treated as an Employee and inherits its code.
- Interfaces give you an is-a relationship without code sharing.
- A Rectangle object can be treated as a Shape but inherits no code.
- Always declare variables using the interface type.

List<String> list = new ArrayList<String>();

## Runtime Efficiency (13.2)

- efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- Assume the following:
- Any single Java statement takes same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.


## Efficiency examples

```
statement1;
statement2;
statement3;
for (int i = 1; i <= N; i++) {
    statement4;
}
for (int i = 1; i <= N; i++) {
    statement5;
    statement6;
    statement7;
}
```


$4 N+3$

## Efficiency examples 2

```
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}
for (int i \(=1\); i \(<=N\); i++) \{ statement2; statement3; statement4; statement5;
\}
```

- How many statements will execute if $\mathrm{N}=10$ ? If $\mathrm{N}=1000$ ?


## Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N .
- growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}}+\mathbf{2 5} \mathbf{N}^{\mathbf{2}} \mathbf{+ 8 N + 1 7}$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N .
- The highest-order term $\left(\mathrm{N}^{3}\right)$ dominates the overall runtime.
- We say that this algorithm runs "on the order of" $\mathrm{N}^{3}$.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")


## Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

| Class | Big-Oh | If you double $\mathbf{N}, \ldots^{c \mid}$ | Example |
| :--- | :--- | :--- | :--- |
| constant | $\mathrm{O}(1)$ | unchanged | 10 ms |
| logarithmic | $\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$ | increases slightly | 175 ms |
| linear | $\mathrm{O}(\mathrm{N})$ | doubles | 3.2 sec |
| log-linear | $\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$ | slightly more than doubles | 6 sec |
| quadratic | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | quadruples | 1 min 42 sec |
| cubic | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | multiplies by 8 | 55 min |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| exponential | $\mathrm{O}\left(2^{\mathrm{N}}\right)$ | multiplies drastically | $5 * 10^{61}$ years |

## Complexity classes

Big-O Complexity


## Collection efficiency

- Efficiency of our ArrayIntList or Java's ArrayList:

| Method | ArrayList |
| :--- | :--- |
| add | $\mathrm{O}(1)$ |
| add (index, value) | $\mathrm{O}(\mathrm{N})$ |
| get | $\mathrm{O}(1)$ |
| remove | $\mathrm{O}(\mathrm{N})$ |
| set | $\mathrm{O}(1)$ |
| size | $\mathrm{O}(1)$ |

## Max subsequence sum

- Write a method maxsum to find the largest sum of any contiguous subsequence in an array of integers.
- Easy for all positives: include the whole array.
- What if there are negatives?

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 2 | 1 | -4 | 10 | 15 | -2 | 22 | -8 | 5 |

Largest sum: $10+15+-2+22=45$

- (Let's define the max to be 0 if the array is entirely negative.)
- Ideas for algorithms?


## Algorithm 1 pseudocode

```
maxSum(a):
    max = 0.
    for each starting index i:
        for each ending index j:
        sum = add the elements from a[i] to a[j].
        if sum > max,
        max = sum.
```

    return max.
    | index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 2 | 1 | -4 | 10 | 15 | -2 | 22 | -8 | 5 |

## Algorithm 1 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{3} \mathbf{)}\right.$. Takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
            // sum = add the elements from a[i] to a[j].
            int sum = 0;
            for (int k = i; k <= j; k++) {
                        sum += a[k];
            }
            if (sum > max) {
            max = sum;
        }
        }
    }
    return max;
}
```


## Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
- For example, we compute the sum between indexes 2 and 5: $a[2]+a[3]+a[4]+a[5]$
- Next we compute the sum between indexes 2 and 6: $a[2]+a[3]+a[4]+a[5]+a[6]$
- We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
- Let's write an improved version that avoids this flaw.

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 2 | 1 | -4 | 10 | 15 | -2 | 22 | -8 | 5 |

## Algorithm 2 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{2} \mathbf{)}\right.$. Can process tens of thousands of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
    }
    }
    return max;
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline value & 2 & 1 & -4 & 10 & 15 & -2 & 22 & -8 & 5 \\
\hline
\end{tabular}
```


## A clever solution

- Claim 1 : A max range cannot start with a negative-sum range.

| i $\quad \ldots \quad$ j | j+1 | $\ldots$ |
| :---: | :---: | :---: |
| $<0$ |  | $\operatorname{sum}(j+1, k)$ |
| $\operatorname{sum}(i, k)<\operatorname{sum}(j+1, k)$ |  |  |

- Claim 2: If sum $(\mathrm{i}, \mathrm{j}-1) \geq 0$ and $\operatorname{sum}(\mathrm{i}, \mathrm{j})<0$, any max range that ends at $\mathrm{j}+1$ or higher cannot start at any of i through j .

- Together, these observations lead to a very clever algorithm...


## Algorithm 3 code

- What complexity class is this algorithm?
- $\mathbf{O}(\mathbf{N})$. Handles many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
        i = ji // cannot start with any of i - j-1
        sum = 0; // (Claim 2)
        }
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
    }
    return max;
}
```


## Runtime of first 2 versions

- Version 1:

| $\mathbf{N}$ | Runtime (ms) |
| :---: | :---: |
| 1000 | 15 |
| 2000 | 47 |
| 4000 | 203 |
| 8000 | 781 |
| 16000 | 3110 |
| 32000 | 12563 |
| 64000 | 49937 |



- Version 2:

| N | Runtime (ms) | 30000 |
| :---: | :---: | :---: |
| 1000 | 16 | 25000 |
| 2000 | 16 | 20000 |
| 4000 | 110 | 15000 |
| 8000 | 406 | 10000 |
| 16000 | 1578 | 5000 |
| 32000 | 6265 | 0 |
| 64000 | 25031 |  |

## Runtime of 3rd version

- Version 3:

| $\mathbf{N}$ | Runtime (ms) |
| :---: | :---: |
| 1000 | 0 |
| 2000 | 0 |
| 4000 | 0 |
| 8000 | 0 |
| 16000 | 0 |
| 32000 | 0 |
| 64000 | 0 |
| 128000 | 0 |
| 256000 | 0 |
| 512000 | 0 |
| 1 e 6 | 0 |
| 2 e 6 | 16 |
| 4 e 6 | 31 |
| 8 e 6 | 47 |
| I .67 e 7 | 94 |
| 3.3 e 7 | 188 |
| 6.5 e 7 | 453 |
| 1.3 e 8 | 797 |
| 2.6 e 8 | 1578 |



Input size (N)

