
CSE 143
Lecture 4: Stacks and Queues

2

Stacks and queues

• Sometimes it is good to have a collection that is less powerful, but is
optimized to perform certain operations very quickly.

• Today we will examine two specialty collections:
– stack: Retrieves elements in the reverse of the order they were added.

– queue: Retrieves elements in the same order they were added.

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

3

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of data and
the operations that can be performed on it.

– Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented, and we
don't need to.

– We just need to understand the idea of the collection and what
operations it can perform.

(Stacks are usually implemented with arrays; queues are often
implemented using another structure called a linked list.)

4

Stacks

• stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.

– Last-In, First-Out ("LIFO")

– The elements are stored in order of insertion,
but we do not think of them as having indexes.

– The client can only add/remove/examine
the last element added (the "top").

• basic stack operations:

– push: Add an element to the top.

– pop: Remove the top element.

– peek: Examine the top element.

stack

top 3

2

bottom 1

pop, peekpush

5

Stacks in computer science

• Programming languages and compilers:

– method calls are placed onto a stack (call=push, return=pop)

– compilers use stacks to evaluate expressions

• Matching up related pairs of things:

– find out whether a string is a palindrome

– examine a file to see if its braces { } match

– convert "infix" expressions to pre/postfix

• Sophisticated algorithms:

– searching through a maze with "backtracking"

– many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

6

Class Stack

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

– Stack has other methods, but we forbid you to use them.

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements

7

Stack limitations/idioms

• Remember: You cannot loop over a stack in the usual way.

Stack<Integer> s = new Stack<Integer>();

...
for (int i = 0; i < s.size(); i++) {

do something with s.get(i);
}

• Instead, you must pull contents out of the stack to view them.

– common idiom: Removing each element until the stack is empty.

// process (and destroy) an entire stack

while (!s.isEmpty()) {

do something with s.pop();

}

8

Exercise

• Consider an input file of exam scores in reverse ABC order:

Woods Vivyan 64

VanHofwegen Raquel 92

Rhodehamel Derek 95

Pendleton Anna 87

...

• Write code to print the exam scores in ABC order using a stack.

– What if we want to further process the exams after printing?

11

Queues

• queue: Retrieves elements in the order they were added.

– First-In, First-Out ("FIFO")

– Elements are stored in order of
insertion but don't have indexes.

– Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

• basic queue operations:

– add (enqueue): Add an element to the back.

– remove (dequeue): Remove the front element.

– peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

12

Queues in computer science

• Operating systems:

– queue of print jobs to send to the printer

– queue of programs / processes to be run

– queue of network data packets to send

• Programming:

– modeling a line of customers or clients

– storing a queue of computations to be performed in order

• Real world examples:

– people on an escalator or waiting in a line

– cars at a gas station (or on an assembly line)

13

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();

q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

– IMPORTANT: When constructing a queue you must use a new
LinkedList object instead of a new Queue object.
• This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

14

Queue idioms

• As with stacks, must pull contents out of queue to view them.

// process (and destroy) an entire queue

while (!q.isEmpty()) {

do something with q.remove();

}

– another idiom: Examining each element exactly once.

int size = q.size();

for (int i = 0; i < size; i++) {

do something with q.remove();

(including possibly re-adding it to the queue)
}

• Why do we need the size variable?

15

Mixing stacks and queues

• We often mix stacks and queues to achieve certain effects.

– Example: Reverse the order of the elements of a queue.

Queue<Integer> q = new LinkedList<Integer>();

q.add(1);

q.add(2);

q.add(3); // [1, 2, 3]

Stack<Integer> s = new Stack<Integer>();

while (!q.isEmpty()) { // Q -> S

s.push(q.remove());

}

while (!s.isEmpty()) { // S -> Q

q.add(s.pop());

}

System.out.println(q); // [3, 2, 1]

16

Exercise

• Modify our exam score program so that it reads the exam scores into
a queue and prints the queue.

– Next, filter out any exams where the student got a score of 100.

– Then perform your previous code of reversing and printing the
remaining students.

• What if we want to further process the exams after printing?

17

Exercises

• Write a method stutter that accepts a queue of integers as a
parameter and replaces every element of the queue with two copies
of that element.

– front [1, 2, 3] back

becomes
front [1, 1, 2, 2, 3, 3] back

• Write a method mirror that accepts a queue of strings as a
parameter and appends the queue's contents to itself in reverse
order.

– front [a, b, c] back

becomes
front [a, b, c, c, b, a] back

