
1

CSE 143
Lecture 1: ArrayList

reading: 10.1

2

Welcome to CSE 143!

I'm Allison Obourn

http://cs.washington.edu/143

http://cs.washington.edu/143

3

CSE 143
 142: can automate basic tasks using a programming language (logic,

control flow, decomposition)

 143: learn tools for automating complex tasks efficiently

 Abstraction (client vs. implementation)

 Data structures

 Algorithms

 Lots of support (undergraduate TAs, IPL, message board)

5

Being Successful
 Determination, hard work, focus

 Investing time (~15 hours a week)

 Starting early

 Developing problem-solving strategies

 Knowing when to ask for help

 Go to the IPL

 Talk to me after class, during office hours

 Studying together

 Homework is individual but studying in groups pays off

6

7

Logistics
 Get to know http://cs.washington.edu/143

 2 sections a week

 Turn in ONE set of problems each week for credit

 Grading described on syllabus

 50% homework (including sections)

20% midterm, 30% final

http://cs.washington.edu/143

8

• Academic honesty is serious

• 5 "free late days“; you can use a
max of 3 on one assignment; -2
for subsequent days late

Weekly programming projects

9

Recall: Arrays (7.1)
 array: object that stores many values of the same type.

 element: One value in an array.

 index: 0-based integer to access an element from an array.

 length: Number of elements in the array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

length = 10

10

Words exercise
 Write code to read a file and display its words in reverse order.

 A solution that uses an array:

String[] allWords = new String[1000];

int wordCount = 0;

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords[wordCount] = word;

wordCount++;

}

 What's wrong with this?

11

Array Limitations
 Fixed-size

 Adding or removing from middle is hard

 Not much built-in functionality (need Arrays class)

12

List Abstraction
 Like an array that resizes to fit its contents.

 When a list is created, it is initially empty.

[]

 Use add methods to add to different locations in list

[hello, ABC, goodbye, okay]

 The list object keeps track of the element values that have been added to it,
their order, indexes, and its total size.

 You can add, remove, get, set, ... any index at any time.

13

Collections and lists
 collection: an object that stores data ("elements")

import java.util.*; // to use Java's collections

 list: a collection of elements with 0-based indexes

 elements can be added to the front, back, or elsewhere

 a list has a size (number of elements that have been added)

 in Java, a list can be represented as an ArrayList object

14

Type parameters (generics)
ArrayList<Type> name = new ArrayList<Type>();

 When constructing an ArrayList, you must specify the
type of its elements in < >

 This is called a type parameter ; ArrayList is a generic class.

 Allows the ArrayList class to store lists of different types.

 Arrays use a similar idea with Type[]

ArrayList<String> names = new ArrayList<String>();

names.add(“Allison Obourn");

names.add(“Adam Blank");

15

ArrayList methods (10.1)*
add(value) appends value at end of list

add(index, value) inserts given value just before the given index,
shifting subsequent values to the right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found
in list (-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting
subsequent values to the left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

* (a partial list; see 10.1 for other methods)

16

ArrayList vs. array
String[] names = new String[5]; // construct

names[0] = "Jessica"; // store

String s = names[0]; // retrieve

for (int i = 0; i < names.length; i++) {

if (names[i].startsWith("B")) { ... }

} // iterate

ArrayList<String> list = new ArrayList<String>();

list.add("Jessica"); // store

String s = list.get(0); // retrieve

for (int i = 0; i < list.size(); i++) {

if (list.get(i).startsWith("B")) { ... }

} // iterate

17

Words exercise, revisited
 Write a program that reads a file and displays the words of that file

as a list.

 Then display the words in reverse order.

 Then display them with all plural words (ending in "s") removed.

18

Exercise solution (partial)
ArrayList<String> allWords = new ArrayList<String>();

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords.add(word);

}

// display in reverse order

for (int i = allWords.size() - 1; i >= 0; i--) {

System.out.println(allWords.get(i));

}

// remove all plural words

for (int i = 0; i < allWords.size(); i++) {

String word = allWords.get(i);

if (word.endsWith("s")) {

allWords.remove(i);

i--;

}

}

19

ArrayList as param/return

public static void name(ArrayList<Type> name) {// param

public static ArrayList<Type> name(params) // return

 Example:

// Returns count of plural words in the given list.

public static int countPlural(ArrayList<String> list) {

int count = 0;

for (int i = 0; i < list.size(); i++) {

String str = list.get(i);

if (str.endsWith("s")) {

count++;

}

}

return count;

}

20

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

...

double myGrade = grades.get(0);

Primitive Type Wrapper Type

int Integer

double Double

char Character

boolean Boolean

