
1 of 4

CSE 143, Autumn 2015
Programming Assignment #2: Melody (40 points)

Due Thursday, October 15, 2015, 11:30 PM

This program focuses on using Stack and Queue collections. Turn in files named Melody.java and song.txt on the

Homework section of the course web site. You will need StdAudio.java, Pitch.java, Accidental.java,

Note.java and MelodyMain.java from the web site; place them in the same folder as your program.

Background Information about Music:

Music consists of notes which have lengths and pitches. The pitch of a note is described with a letter ranging from A to G.

As 7 notes would not be enough to play very interesting music, there are multiple octaves; after we reach note G we start

over at A. Each set of 7 notes is considered an octave. Notes may also be accidentals. This means that they are not in the

same key as the music is written in. We normally notate this by calling them sharp, flat or natural. Music also has silences

which are called rests.

For this assignment we will be representing notes using scientific pitch notation. This style of notation represents each

note as a letter and a number specifying the octave it belongs to. For example, middle C is represented as C4. You do not

need to understand any more than this about scientific pitch notation but you can read more about it here if you are

interested: http://en.wikipedia.org/wiki/Scientific_pitch_notation.

What you will do:

You will write a class that to represent a song. A song is comprised of a

series of notes. It may have repeated sections. As we don't like to have any

redundancy, you may only store one copy of a repeated chunk of notes.

Music is usually printed like the example on the right. The notes are a

series of dots. Their position in relation to the lines determines their pitch and their tops and color, among other things,

determine their length. Since it would be difficult for us to read input in this style, we will instead read input from a text

file.

An example input file is shown at the left. Each line in it represents a single note. The first

number describes the length of the note in seconds. The letter that follows describes the

pitch of the note, using the standard set of letters (A – G) or R if the note is a rest. For

notes other than rests, the third item on the line is the octave that the note is in and the

following is the note's accidental value. The final piece of information for all notes is true

if the note is the start or stop of a repeated section and false otherwise.

You will implement several methods in the Melody class which will allow you to use

MelodyMain to play your song with mp3 player like functionality. Your melody will be

able to play as well as append another melody to itself, reverse and have the it's tempo

changed.

The most challenging part of this assignment is getting melodies to play with repeats

correctly. The file above, which contains 4 repeated notes, is equivalent to the repetitive

file displayed to the right. When you play the above file you should play it the same as

you would play the file to the right.

Implementation Details:

You will write one class; Melody.java. You must use Java's Stack and Queue from

java.util. You must use them as stacks and queues; you may NOT use any index

based methods, iterators or for-each loops. Your classes must have the

constructors/methods below. It must be possible to call the methods multiple times in any

order and get the correct results each time. Your Melody class will use a queue to store

the notes in the song. But unless otherwise specified, you may not create any other

auxiliary data structures (such as arrays, lists, stacks, queues) to help you solve any

method below.

0.2 C 4 NATURAL false
0.4 F 4 NATURAL true
0.2 F 4 NATURAL false
0.4 G 4 NATURAL false
0.2 G 4 NATURAL true
0.2 A 4 NATURAL false
0.4 R false
0.2 C 5 NATURAL false
0.2 A 4 NATURAL false
…

0.2 C 4 NATURAL false
0.4 F 4 NATURAL false
0.2 F 4 NATURAL false
0.4 G 4 NATURAL false
0.2 G 4 NATURAL false
0.4 F 4 NATURAL false
0.2 F 4 NATURAL false
0.4 G 4 NATURAL false
0.2 G 4 NATURAL false
0.2 A 4 NATURAL false
0.4 R false
0.2 C 5 NATURAL false
0.2 A 4 NATURAL false
…

http://en.wikipedia.org/wiki/Scientific_pitch_notation

2 of 4

Note Class (provided by the instructor):

We have provided you with a class named Note that your Melody class will use. A Note object represents a single

musical note that will form part of a melody. It keeps track of the length (duration) of the note in seconds, the note's pitch

(A-G, or R if the note is a rest), the octave, and the accidental (sharp, natural or flat). Each Note object also uses keeps

track of whether it is the first or last note of a repeated section of the melody.

The Note class provides the following constructors and methods that you should use in your program.

Method Description

new Note(duration, pitch, octave,

 accidental, repeat)
Constructs a new Note object.

new Note(duration, pitch,repeat) Constructs a new Note object, omitting the octave and accidental

values. Used to construct a rest (Pitch.R).

getAccidental(), getDuration(),

getOctave(), getPitch(),

isRepeat()

Returns the state of the note as passed to the constructor.

play() Plays the note so that it can be heard from the computer speakers.

setAccidental(accidental),

setDuration(duration),

setOctave(octave), setPitch(pitch),

setRepeat(repeat)

Sets aspects of the state of the note based on the given value.

toString() Returns a text representation of the note.

You can look at the contents of the provided Note.java to answer any further questions about how it works.

Melody.java (for you to implement):

public Melody(Queue<Note> song)

Initializes your melody to store the passed in Queue of Notes. You should throw an IllegalArgumentException if

the Queue is null.

public double getTotalDuration()

Returns the total length of the song in seconds. If the song includes a repeated section the length should include that

repeated section twice. For example, both sample files shown on page have length 3.6. You should not loop through the

notes every time this method is called.

public String toString()

Returns a String containing information about each note. Each note should be on its own line and output using its

toString method. An example file is displayed on page 1. Your String should reflect the changes that have been made

to the song by calling other methods.

public void changeTempo(double tempo)

Changes the tempo of each note to be tempo percent of what it formerly was. Passing a tempo of 1.0 will make the

tempo stay the same. tempo of 2.0 will make each note twice as long. tempo of 0.5 will make each note half as long.

Keep in mind that when the tempo changes the length of the song also changes. You should throw an

IllegalArgumentException if the tempo is negative.

public void reverse()

Reverses the order of notes in the song, so that future calls to the play methods will play the notes in the opposite of the

order they were in before reverse was called. For example, a song containing notes A, F, G, then B would become

B, G, F, A. You may use one temporary Stack or one temporary Queue to help you solve this problem.

3 of 4

public void append(Melody other)

Adds all notes from the given other song to the end of this song. For example, if this song is A,F,G,B and the other song

is F, C, D, your method should change this song to be A, F, G, B, F, C, D. The other song should be unchanged

after the call. Remember that objects can access the private fields of other objects of the same type. You should throw an

IllegalArgumentException if the other Melody is null.

public void play()

Plays the song by calling each note's play method. The notes should be played from the beginning of the queue to the end

unless there are notes that are marked as being the beginning or end of a repeated section. When the first note that is a

beginning or end of a repeated section is found you should create a second queue. You should then get notes from the

original queue until you see another marked as being the beginning or end of a repeat. As you get these notes you should

play them and then place them back in both queues. Once you hit a second marked as beginning or end of a repeat you

should play everything in your secondary queue and then return to playing from the main queue. It should be possible to

call this method multiple times and get the same result.

Back Front

 Main queue

Back Front

 Temporary queue

 Repeated section

The yellow blocks represent notes with start or end of a repeat set to true. They and the other notes in between them

should be moved to a separate queue when played so that they can be repeated.

Creative Aspect (song.txt):
Along with your program, submit a file called song.txt that contains a song that can be used as input. For full credit, the

file should be in the format described above and contain at least 10 notes. It should also be your own work (you may not

just turn in one of our sample songs) but you do not have to compose a song yourself. You are welcome to make

song.txt be a song written by somebody else, such as a lullaby or nursery rhyme or song by your favorite band. This

will be worth a small portion of your grade.

Development Strategy and Hints:

We suggest the following development strategy for solving this program:

1. Create the Melody class and declare every method. Leave every method's body blank; if necessary, return a

"dummy" value like null or 0. Get your code to run in the MelodyMain program, though the output will be

incorrect.

2. Implement the constructor, and the toString method.

3. Implement the getTotalDuration and changeTempo methods. You can check the results of the

changeTempo method by reading in one of the sample files, calling changeTempo and then calling the

toString method and checking your output matches what you expected.

4. Write the reverse and append methods.

5. Write an initial version of play() that assumes there are no repeating sections.

6. Add the play() code that looks for repeated sections and plays them twice, as described previously.

You can test the output of your program by running it on various inputs in the MelodyMain client. You can also use our

Output Comparison Tool to see that your outputs match what is expected.

4 of 4

Style Guidelines and Grading:

Part of your grade will come from appropriately using stacks and queues. You may only use the size, isEmpty, add,

remove and peek methods for queues. For stacks, you may only use the size, isEmpty, pop, push and peek methods.

You may not call any Stack methods that accept index parameters. You may not examine a stack/queue using a "for

each" loop or iterator. Do not make unnecessary or redundant extra passes over a queue when the answer could be

computed with fewer passes. Declare queues as variables of type Queue, not variables of type LinkedList (on the left

side of the equals sign).

Redundancy is always a major grading focus; avoid redundancy and repeated logic as much as possible in your code.

Properly encapsulate your objects by making fields private. Avoid unnecessary fields; use fields to store important data

of your objects but not to store temporary values only used within a single method. Initialize fields in constructors only.

Follow good general style guidelines such as: appropriately using control structures like loops and if/else statements;

avoiding redundancy using techniques such as methods, loops, and if/else factoring; properly using indentation, good

variable names, and proper types; and not having any lines of code longer than 100 characters.

Comment descriptively at the top of your class, each method, and on complex sections of your code. Comments should

explain each method's behavior, parameters, return, pre/post-conditions, and any exceptions thrown. Write descriptive

comments that explain error cases, and details of the behavior that would be important to the client. Your comments

should be written in your own words and not taken verbatim from this document.

