Lecture 12: Regex/Grammars
e | hope you guys are feeling CREATIVE today!
e Today we’re going to spend some time talking about some specific applications of computing: PARSING
and GRAMMARS
o These are used in many fields, like “natural language processing” (analyzing language)
o Parsing
m Definition: Breaking up some text into “tokens” - individual pieces, e.g. words
m We've used Scanners to do this parsing
m We'll use a different technique today
e Regular expressions
o A way we describe text patterns
m Can describe a specific string (e.g. “hello”)
m Or can describe a family of strings (for example, all strings that consist of 1 or more
spaces)
m Not all families of strings can be described by regexes, but many can
o They come up in computer science and it's good to know what they are/the basics of how to use
them
o There are hundreds of books about regular expressions
m Regexes are very powerful, so we’ll just skim the surface
We will use regular expressions in order to do parsing - breaking text into tokens
We saw using a Scanner, but now we’ll use the string’s “split(regex)” method
This is what you’ll use on the next homework (out today)
e Examples:
o Try “four score and seven years ago”
m Split on a space
m Spliton ‘s’
m Spliton'‘e’
o Try“our score and seven years” (with extra spaces)
m Split on a space
m Split on two spaces
m We want to split on “1 or more spaces” - more than one char per delimiter
m Spliton ‘ +
o Try “four score and seven years ago” (with tabs)
m Spliton ‘ +
m Spliton tab
m (we can also use \t)
o Try “four--score and --seven----- years -ago” (mult types of delimiters)
Split on spaces
Split on dashes
But we want to split on BOTH
Spliton [-]+’
Brackets indicate “OR”
o Try “four score and” - mult spaces and tabs
m Split on spaces
m Split on tabs
m Spliton [\t]+’ (you'll use this on your homework

O

O

This&&M$$- isn't!!l,,,going;;;to be<><>easy!

m We want to identify words (without the punctuation) (opposite of what we did)
How can we identify words with our regular expressions?
[abcdefghijklmnopgrstuvwxyz]+
But there’s a simpler way to identify them
[a-z]+
But the T is left behind - we want capital letters too!

[a-zA-Z]+

But this is the opposite of what we want - we want to keep the words!

[fa-zA-Z]+

But we want “isn’t” to stay together

[fa-zA-Z'1+

You can also use regex delimiters in a scanner
m Instead of using whitespace, tell the scanner to use something else
m input.useDelimiter("[*a-zA-Z']+")

e Grammars

o
o

o

A grammar is a set of rules governing a language
Computational linguistics is a field of computer science, and we write a lot of languages too (aka
Java)
We are going to study a system for producing new sentences based on a set of rules
The system is called BNF (Backus-Naur Form)
m BNF defines a set of rules governing the language
m Distinguishes between TERMINALS (words like “run”, “hippo”, “Jane”)
m And NONTERMINALS (abstract concepts like sentence, noun, verb....)
Example
<s§>::= <np> <vp>
We use “::=" to separate the nonterminal and the rule that goes with it
Read this as “a sentence is composed of a noun-phrase followed by a verb phrase”
<s>, <np>, <vp> are nonterminals of the grammar
Nonterminals can be defined in terms of other nonterminals
m We don’t expect these nonterminals to appear in the actual sentences
(It turns out you can draw a diagram of how sentences are derived from a grammar)
m (show image from Wikipedia)
m Thisis called a “parse tree”

e Let’s drill down a bit more into the components of the grammar

o
o

We defined a sentence, but let’s define the components of a sentence

The simplest version of a noun phrase is probably just a proper noun:
<np>::= <pn>

But then we also need to define the proper noun
<pn>:= ||| e

We use the pipe character “|” to distinguish between possible rules - read the pipe as OR

Values on the right-hand side here are TERMINALS - they will appear in the final sentence

All the rules are tokenized by white space (a la regex)

m So a terminal with two words is two separate terminals, one followed by the other - this is

ok

o (RUN GRAMMARMAIN)
generate <pn> x 5 (randomly chooses)
generate <s>x 5
Notice that the sentence always has <vp> in it - why?
Because we didn’t define a rule for a <vp>
e So the program assumes that it's a terminal
e The triangular brackets DO NOT necessarily indicate a non-terminal - only things
that appear on the left-hand side of a ::=
e Brackets are just a convention
Expand the grammar: other noun phrases
o We could have “the” or “a” followed by a noun
m What are those called? determiner!
m So we can add another rule to the <np> description
<np>::= <pn> | <det> <n>
m Notice how we separate the rules with the vertical bar
o Now we can add the rule for the determiner
<det>::= the | a | this | some
o And finally, let's add some nouns
<n>i= |||
o (RUN GRAMMARMAIN)
m generate <np> x 5 (randomly chooses between pn and det-noun rules)
m generate <s> x 5 (we see the different types of nouns, but still no vp
Ok, let’'s add verbs
o Does anyone know what the different types of verbs are?
m Transitive, intransitive
o So we can make a rule that chooses between transitive and intransitive
<vp>::= <tv> <np> | <iv>
o Then we need to define our <tv>
<tv>:=hit|...|...| ...
o And our <iv>
<iv>:=laughed | ... | ... | ...
(note that we’re not dealing with tenses right now)
(RUN GRAMMARMAIN)
m generate <s>x 10
m But these are kind of boring - how can we spice these up?
Adding adjectives
o Let'saddarule
<adj>:=foxy | ...| ... | ...
o And where does that <adj> get used?
<np>::= <pn> | <det> <n> | <det> <adj> <n>
We keep our old det-n but add the adj possibility
But what if we want to be REALLY descriptive?
m We could use more than one adjective
o This is getting complicated, so let’s add an <adjp>
<np>::= <pn> | <det> <n> | <det> <adjp> <n>
o What does the <adjp> rule look like? How many adjectives could we have?
<adjp>::= <adj> | <adj> <adj> | <adj> <adj> <adj>
o Could be arbitrarily many - what can we do?

o Use recursion!
<adjp>::= <adj> | <adj> <adjp>
o (base case = one adjective, recursive case = an adjective + an adjp)
o (RUN GRAMMARMAIN)
m generate <np>x5
m generate <s>x 10
m More interesting!
e Adding adverbs
o Let'saddarule
<adv>::= frankly | quickly | verily | recursively
o And add it into the grammar
<vp>.:= <tv> <np> | <iv> | <adv> <vp>
o And then generate more sentences
e Let’s just go over again how we generate a sentence
o (show parse tree diagram from the spec)
o This assignment will use RECURSION and MAPS
o non-terminals are the map keys, rules are the map values

