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CSE 143, Winter 2013 
Programming Assignment #2: HTML Validator  

Due Thursday, July 10, 2014, 11:30 PM 
This program focuses on using Stack and Queue collections.  Turn in files named HtmlValidator.java, and 
HtmlValidatorTest.java from the Homework section of the course web site. You will need HtmlTag.java and 
ValidatorMain.java from the web site; place them in the same folder as your program. 

Though this assignment relates to web pages and HTML, you do not need to know how to write HTML to complete it. 

Background Information About HTML: 
Web pages are written in a language called Hypertext Markup Language, or HTML. An HTML file consists of text 
surrounded by markings called tags.  Tags give information to the text, such as formatting (bold, italic, etc.) or layout 
(paragraph, table, list).  Some tags specify comments or information about the document (header, title, document type). 
A tag consists of a named element between less-than < and greater-than > symbols.  For example, the tag for making text 
bold uses the element b and is written as <b>.  Many tags apply to a range of text, in which case a pair of tags is used: an 
opening tag indicating the start of the range and a closing tag indicating the end of the range.  A closing tag has a / slash 
after its < symbol, such as </b>.  So to make some text bold on a page, one would put the text to be bold between opening 
and closing b tags, <b>like this</b>.  Tags can be nested to combine effects, <b><i>bold italic</i></b>. 
Some tags, such as the br tag for inserting a line break or img for inserting an image, do not cover a range of text and are 
considered to be "self-closing."  Self-closing tags do not need a closing tag; for a line break, only a tag of <br> is needed.  
Some web developers write self-closing tags with an optional / before the >, such as <br />. 
The distinction between a tag and an element can be confusing.  A tag is a complete token surrounded by <> brackets, 
which could be either an opening or closing tag, such as <title> or </head>.  An element is the text inside the tag, such 
as title or head.  Some tags have attributes, which are additional information in the tag that comes after the element.  
For example, the tag <img src="cat.jpg"> specifies an image from the file cat.jpg.  The element is img, and the 
rest of the text such as src are attributes.  In this assignment we will ignore attributes and focus just on elements and tags. 
If you're curious, there are tutorials such as http://www.w3schools.com/html/ and http://www.cs.washington.edu/190m/. 

HTML Validation: 
One problem on the web is that many developers make mistakes in their HTML code.  All tags that cover a range must 
eventually be closed, but some developers forget to close their tags.  Also, whenever a tag is nested inside another tag, 
<b><i>like this</i></b>, the inner tag (i for italic, here) must be closed before the outer tag is closed.  So the 
following tags are not valid HTML, because the </i> should appear first:  <b><i>this is invalid</b></i> 
Below is an example of a valid HTML file, with its tags in bold.  <!-- and --> are comment tags. 
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN"> 
<!-- This is a comment --> 
<html> 
  <head> 
    <title>Turtles are cool</title> 
    <meta http-equiv="Content-Type" content="text/html"> 
    <link href="style.css" type="text/css" /> 
  </head> 
 
  <body> 
    <p>Turtles swim in the <a href="http://ocean.com/">ocean</a>.</p> 
    <p>Some turtles are over 100 years old.  Here is a picture of a turtle: 
       <img src="images/turtle.jpg" width="100" height="100" /> 
    </p> 
  </body> 
</html> 

In this assignment you will write a class that examines HTML to figure out whether it represents "valid" sequences of 
tags.  Your validator will use stacks and queues to figure out whether the tags match.  Instructor-provided code will read 
HTML pages from files and break them apart into tags for you; it's your job to see whether the tags match correctly. 
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Implementation Details: 
You will write a class named HtmlValidator.  You must use Java's Stack and Queue from java.util.  Your class 
must have the constructors/methods below.  It must be possible to call the methods multiple times in any order and get the 
correct results each time.  Several methods interact with HtmlTag objects, described later.  Unless otherwise specified, 
you may not create auxiliary data structures (such as arrays, lists, stacks, queues) to help you solve any method below. 

public HtmlValidator() 
public HtmlValidator(Queue<HtmlTag> tags) 
Your class should have two constructors.  The first should initialize your validator to store an empty queue of HTML 
tags.  The second should initialize your validator with an entirely separate copy of the queue that was passed in.  If the 
caller passes a queue to your constructor, after your constructor is done executing, the client’s queue should have the same 
state as when it was passed in, and any subsequent modifications to one queue should not be reflected in the other. 
The queue for the page shown previously would contain the tags below.  Further tags can be added by calling addTag. 
front [<!doctype>, <!-- -->, <html>, <head>, <title>, </title>, <meta>, <link>,  
     </head>, <body>, <p>, <a>, </a>, </p>, <p>, <img>, </p>, </body>, </html>] back 
If the queue passed is null, you should throw an IllegalArgumentException.  An empty queue (size 0) is allowed.  
The constructors are allowed to construct a queue to store your validator's tags if necessary. 

public void addTag(HtmlTag tag) 
In this method you should add the given tag to the end of your validator's queue. 
If the tag passed is null, you should throw an IllegalArgumentException. 

public Queue<HtmlTag> getTags() 
In this method you should return your validator's queue of HTML tags.  The queue contains all tags that were passed to 
the constructor (if any) in their proper order; it should also reflect any changes made such as adding tags with addTag or 
removing tags with removeAll. 

public void removeAll(String element) 
In this method you should remove from your validator's queue any tags that match the given element.  For example, if 
your validator is constructed using the tags from the page shown previously and removeAll("p")were called on it, your 
queue would be modified to contain the following tags.  Notice that all <p> and </p> tags have been removed: 
front [<!doctype>, <!-- -->, <html>, <head>, <title>, </title>, <meta>, <link>,  
     </head>, <body>, <a>, </a>, <img>, </body>, </html>] back 

If the element passed does not exactly match any tags (such as an empty string), your queue should not be modified. 
You may not use any auxiliary collections such as extra stacks or queues, though you can create simple variables. 
If the element passed is null, you should throw an IllegalArgumentException. 

public void validate() 
In this method you should print an indented text representation of the HTML tags in your queue.  Display each tag on its 
own line.  Every opening tag that requires a closing tag increases the level of indentation of following tags by four spaces 
until its closing tag is reached.  The output for the HTML file on the first page would be:   (continued on next page) 
<!doctype> 
<!-- --> 
<html> 
    <head> 
        <title> 
        </title> 
        <meta> 
        <link> 
    </head> 
    <body> 
        <p> 
            <a> 
            </a> 
        </p> 
        <p> 
            <img> 
        </p> 
    </body> 
</html> 
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To generate the output, analyze your queue of tags with a Stack.  The basic idea of the algorithm is that when you see an 
opening tag that is not self-closing, you should push it onto a stack and increase your indentation.  When you see a closing 
tag, you should pop the top element from the stack and decrease your indentation.  You may use a single temporary 
Stack (in addition to your validator's queue of tags) to compute the result.  You may not use any other collections, arrays, 
etc., though you can create as many simple variables as you like.  You will also handle errors as described below. 

Error Handling: 
Your validate method should print error messages if you encounter either of the following conditions in the HTML: 

• A closing tag that does not match the most recently opened tag (or if there are no open tags at that point). 
• Reaching the end of the HTML input with any tags still open that were not properly closed. 

For example, the following HTML is valid: 
 <p><b>bold text <i>bold and italic text</i> just bold again</b> <br/> more </p> 

But the following HTML is not valid, because the </b> appears before the </i>: 
 <p><b> bold text <i>bold and italic text</b> just italic</i> neither</p> 

The following HTML is also not valid, because the <html> tag is never closed: 
 <html><body> <b><i>bold italic</i></b> normal text</body> 

Suppose the previous short HTML file were modified to add several errors, as follows: an added unwanted a deleted 
</title> tag, an added second </head> tag, an added </br> tag and a deleted </body> tag: 
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN"> 
<!-- This is a comment --> 
<html> 
  <head> 
    <title>Turtles are cool  
    <meta http-equiv="Content-Type" content="text/html"> 
    <link href="style.css" type="text/css" rel="stylesheet" /> 
  </head> 
  </head> 
 
  <body> 
    <p>Turtles swim in the <a href="http://ocean.com>ocean</a>.</p> 
    </br> 
    <p>Some turtles are over 100 years old.  Here is a picture of a turtle: 
       <img src="images/turtle.jpg" width="100" height="100"> </p> 
</html> 

The resulting output for this invalid file should be the following: 
<!doctype> 
<!-- --> 
<html> 
    <head> 
        <title> 
            <meta> 
            <link> 
ERROR unexpected tag: </head> 
ERROR unexpected tag: </head> 
            <body> 
                <p> 
                    <a> 
                    </a> 
                </p> 
ERROR unexpected tag: </br> 
                <p> 
                    <img> 
                </p> 
ERROR unexpected tag: </html> 
ERROR unclosed tag: <body> 
ERROR unclosed tag: <title> 
ERROR unclosed tag: <head> 
ERROR unclosed tag: <html> 

The reason that there are two error messages for </head> are because neither </head> tag seen matches the most 
recently opened tag at the time, which is <title>.  The four unclosed tags at the end represent the fact that those four 
tags didn't have a closing tag in the right place (or, in some cases, no closing tag at all). 
The tag </br> is unexpected because <br> is self-closing (that is, isSelfClosing() returns true when called on any 
HtmlTag object representing a br tag.  See below for HtmlTag).  Self-closing tags are always opening tags.  

Because of the simplicity of our algorithm, a single mistake in the HTML can result in multiple error messages.  Near the 
end of the file is a </html> tag, but this is not expected because body, title, and head were never closed.  So the 
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algorithm prints many errors, such as saying that the html tag is unclosed, though the underlying problem is that the body 
tag was never closed.  Also notice that an unexpected closing tag does not change the indentation level of the output. 

Your complete validation algorithm: Examine each tag from the queue, and if it is an opening tag that requires a closing 
tag, push it onto a stack and increase indentation.  If it is a closing tag, compare it to the tag on top of the stack.  If the two 
tags match, pop the top tag of the stack and decrease indentation.  If they don't match, it is an error.  Any tags remaining 
on the stack at the end are errors. 

 

Provided Files: 
• HtmlTag.java: Objects that represent HTML tags for you to process. 
• ValidatorMain.java: A basic testing program to run your HtmlValidator code  

An HtmlTag object corresponds to an HTML tag such as <p> or </table>.  You don't ever need to construct HtmlTag 
objects in your code, but you will process them from your queue.  Each object has the following methods: 

public String getElement() 
Returns this HTML tag's element name, such as "table". 
public boolean isOpenTag() 
Returns true if this tag is an opening tag, such as <p> or <b>. Self-closing tags like <br /> will return true as well. 
public boolean isSelfClosing() 
Returns true if this element does not require a closing tag, which is the case for elements such as br and img. 
public boolean matches(HtmlTag other) 
Returns true if this tag and the given tag have the same element but opposite types, such as <body> and </body>. 
public String toString() 
Returns a string representation of this HTML tag, such as "<p>" or "</table>". 

 

Some students have confusion about the difference between an HtmlTag object and a String.  An HtmlTag is related to 
a String in that it stores an element as a String inside of it; and in that a tag has a natural representation as a String 
by surrounding its element with < and > brackets.  But the HtmlTag object is more useful than a bare String in that it 
has the methods above.  So you can ask it if it is an opening tag, whether it matches another tag, etc. without needing to 
manually trim away < and > characters. 

 

 

 

 

 

 

 

 

It may seem like a chore to have to figure out how HtmlTag objects work, when Strings are more familiar.  But part of 
becoming a mature software developer is becoming comfortable with pre-written code that is provided to you by others, 
and using it to solve part of a larger overall task. 

element:     "p" 
isOpenTag:     true 
isSelfClosing: false 

element:     "p" 
isOpenTag:     false 
isSelfClosing: false 

matches 
 
  true 

"<p>Hi, how are you?</p>" 

HtmlTag HtmlTag 
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Development Strategy and Hints: 
We suggest the following development strategy for solving this program: 

1. Create the class and declare method stubs (full header but blank body).  If necessary, return a "dummy" value like 
null or 0.  Get your code to run in the ValidatorMain program, though the output will be incorrect. 

2. Implement the bodies of the constructors, getTags, and add methods.  Verify them in the testing program. 
3. Write the removeAll method. 
4. Write an initial version of the validate algorithm described previously that assumes the page is valid and does 

not worry about errors.  Get the overall algorithm, output, and indentation working for valid HTML.  
5. Add the validate code that looks for errors and prints appropriate error messages, as described previously. 

You can test the output of your validator by running it on various inputs in the ValidatorMain client.  You can also use 
our Output Comparison Tool to see that your outputs match what is expected. 
 
null: Some students have trouble understanding the directions related to null on this assignment.  The value null is a 
special value that indicates the lack of an object; a reference that does not refer to any object.  When a given method's 
spec says, "if foo is null, do X," it means that you should test:  if (foo == null) { X } .  In particular, a null 
queue is not the same as an empty queue;  a null string is not the same as the empty string, "" ;  and a null HtmlTag is 
not the same as an HtmlTag with a null element (which will not occur anyway, since HtmlTag throws an exception if 
you try to create one with a null element). 
The validate method is the toughest.  It can be hard to handle all of the errors properly and to get the indentation just 
right.  Remember that the indentation increases when an opening tag is seen, and the indentation decreases when a valid 
expected closing tag is seen.  Those should be the only two times you ever need to adjust your indentation. 
Some students also have trouble with removeAll.  Recall that there are common stack/queue bugs related to looping over 
a stack or queue whose contents and/or size are being changed during the loop.  See the textbook appendix on stacks and 
queues posted on the class web site for ideas about how to avoid these bugs. 
 

Style Guidelines and Grading: 
Part of your grade will come from appropriately using stacks and queues.  You may only use the size, isEmpty, add, 
remove and peek methods for queues.  For stacks, you may only use the size, isEmpty, pop, push and peek methods.  
You may not call any Stack methods that accept index parameters.  You may not examine a stack/queue using a "for 
each" loop or iterator.  Do not make unnecessary or redundant extra passes over a queue when the answer could be 
computed with fewer passes.  Declare queues as variables of type Queue, not variables of type LinkedList (on the left 
side of the equals sign). 
Redundancy is always a major grading focus; avoid redundancy and repeated logic as much as possible in your code. 
Properly encapsulate your objects by making fields private.  Avoid unnecessary fields; use fields to store important data 
of your objects but not to store temporary values only used within a single method.  Initialize fields in constructors only. 
Follow good general style guidelines such as: appropriately using control structures like loops and if/else statements; 
avoiding redundancy using techniques such as methods, loops, and if/else factoring; properly using indentation, good 
variable names, and proper types; and not having any lines of code longer than 100 characters. 
Comment descriptively at the top of your class, each method, and on complex sections of your code.  Comments should 
explain each method's behavior, parameters, return, pre/post-conditions, and any exceptions thrown.  Write descriptive 
comments that explain error cases, and details of the behavior that would be important to the client (What does it do if the 
tag is not found?  Where does it add the tag?  What happens if it is null?  Etc.).  Your comments should be written in your 
own words and not taken verbatim from this document. 
 


