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Input and output streams 
�  stream: an abstraction of a source or target of data 

�  8-bit bytes flow to (output) and from (input) streams 

�  can represent many data sources: 
�  files on hard disk 
�  another computer on network  
�  web page 
�  input device (keyboard, mouse, etc.) 

�  represented by java.io classes 
�  InputStream 
�  OutputStream 
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Streams and inheritance 
�  input streams extend common superclass InputStream; 

output streams extend common superclass OutputStream 
�  guarantees that all sources of data have the same methods 
�  provides minimal ability to read/write one byte at a time 
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Inheritance 
�  inheritance: Forming new classes based on existing ones. 

�  a way to share/reuse code between two or more classes 

�  superclass: Parent class being extended. 
�  subclass: Child class that inherits behavior from superclass. 

�  gets a copy of every field and method from superclass 

�  is-a relationship: Each object of the subclass also "is a(n)" 
object of the superclass and can be treated as one. 
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Inheritance syntax 
 public class name extends superclass { 
 
 public class Lawyer extends Employee { 
     ... 
 } 
 

�  override: To replace a superclass's method by writing a 
new version of that method in a subclass. 

 

 public class Lawyer extends Employee { 
     // overrides getSalary method in Employee class; 
     // give Lawyers a $5K raise 
     public double getSalary() { 
         return 55000.00; 
     } 
 } 
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super keyword 
�  Subclasses can call inherited behavior with super 

 

 super.method(parameters) 
 super(parameters); 

 
 
 

 public class Lawyer extends Employee { 
     public Lawyer(int years) { 
         super(years);  // calls Employee constructor 
     } 

 

     // give Lawyers a $5K raise 
     public double getSalary() { 
         double baseSalary = super.getSalary(); 
         return baseSalary + 5000.00; 
     } 
 } 
 
�  Lawyers now always make $5K more than Employees. 
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I/O and exceptions 
�  exception: An object representing an error. 

�  checked exception: One that must be 
handled for the program to compile. 

�  Many I/O tasks throw exceptions. 
�  Why? 

�  When you perform I/O, you must either: 
�  also throw that exception yourself 
�  catch (handle) the exception 
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Throwing an exception 
public type name(params) throws type { 

 
�  throws clause: Keywords on a method's header that state 

that it may generate an exception. 
 
�  Example: 
 

 public void processFile(String filename) 
             throws FileNotFoundException { 
 

 "I hereby announce that this method might throw an 
exception, and I accept the consequences if it happens." 
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Catching an exception 
try { 
    statement(s); 
} catch (type name) { 
    code to handle the exception 
} 
 

�  The try code executes.  If the given exception occurs, the try 
block stops running; it jumps to the catch block and runs 
that. 

 
try { 
    Scanner in = new Scanner(new File(filename)); 
    System.out.println(input.nextLine()); 
} catch (FileNotFoundException e) { 
    System.out.println("File was not found."); 
} 
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Exception inheritance 
�  Exceptions extend from a common superclass Exception 
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Dealing with an exception 
�  All exception objects have these methods: 

�  Some reasonable ways to handle an exception: 
�  try again;  re-prompt user;  print a nice error message; 

quit the program;  do nothing (!) 

Method Description 

public String getMessage() text describing the error 

public String toString() a stack trace of the line 
numbers where error occurred 

getCause(),  getStackTrace(), 
printStackTrace() 

other methods 
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Inheritance and exceptions 
�  You can catch a general exception to handle any subclass: 

 

try { 
    Scanner input = new Scanner(new File("foo")); 
    System.out.println(input.nextLine()); 
} catch (Exception e) { 
    System.out.println("File was not found."); 
} 
 

 

�  Similarly, you can state that a method throws any 
exception: 

 

public void foo() throws Exception { ... 
 
 
 
 

�  Are there any disadvantages of doing so? 
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The class Object 
�  The class Object forms the root of the 

overall inheritance tree of all Java classes. 
�  Every class is implicitly a subclass of Object 

�  The Object class defines several methods 
that become part of every class you write. 
For example: 

�  public String toString() 
Returns a text representation of the object, 
usually so that it can be printed. 
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Object methods 

�  What does this list of methods tell you about Java's design? 

method description 

protected Object clone() creates a copy of the object 

public boolean equals(Object o) returns whether two objects 
have the same state 

protected void finalize() used for garbage collection 

public Class<?> getClass() info about the object's type 

public int hashCode() a code suitable for putting this 
object into a hash collection 

public String toString() text representation of object 

public void notify() 
public void notifyAll() 
public void wait() 
public void wait(...) 

methods related to 
concurrency and locking  (seen 
later) 
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Using the Object class 
�  You can store any object in a variable of type Object. 

 

Object o1 = new Point(5, -3); 
Object o2 = "hello there"; 
 

�  You can write methods that accept an Object parameter. 
 

public void checkNotNull(Object o) { 
    if (o != null) { 
        throw new IllegalArgumentException(); 
    } 
 

�  You can make arrays or collections of Objects. 
 

Object[] a = new Object[5]; 
a[0] = "hello"; 
a[1] = new Random(); 
List<Object> list = new ArrayList<Object>(); 



17 

Recall: comparing objects 
�  The == operator does not work well with objects. 

�  It compares references, not objects' state. 
�  It produces true only when you compare an object to itself. 
 

 Point p1 = new Point(5, 3); 
 Point p2 = new Point(5, 3); 
 Point p3 = p2; 
 
 // p1 == p2 is false; 
 // p1 == p3 is false; 
 // p2 == p3 is true 
 
 // p1.equals(p2)? 
 // p2.equals(p3)? 

 
 
 

... 

x 5  y 3 p1 

p2 
 
 
 

... 

x 5  y 3 

p3 
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Default equals method 
�  The Object class's equals implementation is very simple: 

 

public class Object { 
    ... 
    public boolean equals(Object o) { 
        return this == o; 
    }  
} 

�  However: 
�  When we have used equals with various objects, it didn't behave like 
== .  Why not?   if (str1.equals(str2)) { ... 

�  The Java API documentation for equals is elaborate.  Why? 
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Implementing equals 
 public boolean equals(Object name) { 
     statement(s) that return a boolean value ; 
 } 

�  The parameter to equals must be of type Object. 

�  Having an Object parameter means any object can be passed. 
�  If we don't know what type it is, how can we compare it? 
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Casting references 
Object o1 = new Point(5, -3); 
Object o2 = "hello there"; 
 
((Point) o1).translate(6, 2);      // ok 
int len = ((String) o2).length();  // ok 
Point p = (Point) o1; 
int x = p.getX();                  // ok 
 

�  Casting references is different than casting primitives. 
�  Really casting an Object reference into a Point reference. 
�  Doesn't actually change the object that is referred to. 
�  Tells the compiler to assume that o1 refers to a Point object. 
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The instanceof keyword 
 if (variable instanceof type) { 
     statement(s); 
 } 

 

�  Asks if a variable refers 
to an object of a given type. 
�  Used as a boolean test. 

String s = "hello"; 
Point p = new Point(); 

expression result 
s instanceof Point false 

s instanceof String true 

p instanceof Point true 

p instanceof String false 

p instanceof Object true 

s instanceof Object true 

null instanceof 
String 

false 

null instanceof 
Object 

false 
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equals method for Points 
// Returns whether o refers to a Point object with  
// the same (x, y) coordinates as this Point. 
public boolean equals(Object o) { 
    if (o instanceof Point) { 
        // o is a Point; cast and compare it 
        Point other = (Point) o; 
        return x == other.x && y == other.y; 
    } else { 
        // o is not a Point; cannot be equal 
        return false; 
    } 
} 
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More about equals 
�  Equality is expected to be reflexive, symmetric, and transitive: 

 

 a.equals(a) is true for every object a 
 a.equals(b) ↔  b.equals(a) 
(a.equals(b) && b.equals(c)) ↔  a.equals(c) 

 

�  No non-null object is equal to null: 
 

 a.equals(null) is false for every object a 
 

�  Two sets are equal if they contain the same elements: 
 

 Set<String> set1 = new HashSet<String>(); 
 Set<String> set2 = new TreeSet<String>(); 
 for (String s : "hi how are you".split(" ")) { 
     set1.add(s);    set2.add(s); 
 } 
 System.out.println(set1.equals(set2));   // true 
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Polymorphism 
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Polymorphism 
�  polymorphism: Ability for the same code to be used with different 

types of objects and behave differently with each. 

�  A variable or parameter of type T  can refer to any subclass of T. 
 

 Employee ed = new Lawyer(); 
 Object otto = new Secretary(); 
 

�  When a method is called on ed, it behaves as a Lawyer. 
�  You can call any Employee methods on ed. 

You can call any Object methods on otto. 
�  You can not  call any Lawyer-only methods on ed (e.g. sue). 

You can not  call any Employee methods on otto (e.g. getHours). 
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Polymorphism examples 
�  You can use the object's extra functionality by casting. 

 

Employee ed = new Lawyer(); 
ed.getVacationDays();                   // ok 
ed.sue();                               // compiler error 
((Lawyer) ed).sue();                    // ok 
 

�  You can't cast an object into something that it is not. 
 

Object otto = new Secretary(); 
System.out.println(otto.toString());    // ok 
otto.getVacationDays();                 // compiler error 
((Employee) otto).getVacationDays();    // ok 
((Lawyer) otto).sue();                  // runtime error 
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"Polymorphism mystery" 
�  Figure out the output from all methods of these classes: 

 

  public class Snow { 
      public void method2() { 
          System.out.println("Snow 2"); 
      } 
 

      public void method3() { 
          System.out.println("Snow 3"); 
      } 
  } 
 
  public class Rain extends Snow { 
      public void method1() { 
          System.out.println("Rain 1"); 
      } 
 

      public void method2() { 
          System.out.println("Rain 2"); 
      } 
  } 
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"Polymorphism mystery" 
  public class Sleet extends Snow { 
      public void method2() { 
          System.out.println("Sleet 2"); 
          super.method2(); 
          method3(); 
      } 
 

      public void method3() { 
          System.out.println("Sleet 3"); 
      } 
  } 
 
  public class Fog extends Sleet { 
      public void method1() { 
          System.out.println("Fog 1"); 
      } 
 

      public void method3() { 
          System.out.println("Fog 3"); 
      } 
  } 
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Technique 1: diagram 
�  Diagram the classes from top (superclass) to bottom. 

Snow 

method2 
method3 

method1 
method2 
(method3) 

Rain 

method1 
(method2) 
method3 

Fog 

method2 
method3 

Sleet 
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Technique 2: table 
method Snow Rain Sleet Fog 

method1  
 
 

method2  

 
 

method3  

 
 

Italic  - inherited behavior 
Bold  - dynamic method call 

method Snow Rain Sleet Fog 

method1 Rain 1 

 
Fog 1 

 
 

method2 Snow 2 Rain 2 Sleet 2 

Snow 2 
method3() 

Sleet 2 

Snow 2 
method3() 

method3 Snow 3 Snow 3 Sleet 3 Fog 3 
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Mystery problem, no cast 
    Snow var3 = new Rain(); 
    var3.method2();          // What's the output? 

 

�  If the problem does not  have any casting, then: 
1.  Look at the variable's type. 

If that type does not have the method: ERROR. 

2.  Execute the method, behaving like the object's type. 
(The variable type no longer matters in this step.) 
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Example 1 
�  What is the output of the following call? 

 
  Snow var1 = new Sleet(); 
  var1.method2(); 
 

�  Answer: 
 
  Sleet 2 
  Snow 2 
  Sleet 3 

Snow 

method2 
method3 

method1 
method2 
(method3) 

Rain 

method1 
(method2) 
method3 

Fog 

method2 
method3 

Sleet 
object 

variable 
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Example 2 
�  What is the output of the following call? 

 
  Snow var2 = new Rain(); 
  var2.method1(); 
 

�  Answer: 
 

 ERROR 
 (because Snow does not 
 have a method1) 

Snow 

method2 
method3 

method1 
method2 
(method3) 

Rain 

method1 
(method2) 
method3 

Fog 

method2 
method3 

Sleet 

variable 

object 
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Mystery problem with cast 
    Snow var2 = new Rain(); 
    ((Sleet) var2).method2();   // What's the output? 
 

�  If the problem does  have a type cast, then: 
1.  Look at the cast type. 

If that type does not have the method: ERROR. 

2.  Make sure the object's type is the cast type or is a subclass of the cast 
type.  If not: ERROR.  (No sideways casts!) 

3.  Execute the method, behaving like the object's type. 
(The variable / cast types no longer matter in this step.) 
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Example 3 
�  What is the output of the following call? 

 
  Snow var2 = new Rain(); 
  ((Rain) var2).method1(); 
 

�  Answer: 
 
 Rain 1 

Snow 

method2 
method3 

method1 
method2 
(method3) 

Rain 

method1 
(method2) 
method3 

Fog 

method2 
method3 

Sleet 

variable 

object 
cast 
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Example 4 
�  What is the output of the following call? 

 
  Snow var2 = new Rain(); 
  ((Sleet) var2).method2(); 
 

�  Answer: 
 

 ERROR 
 (because the object's 
type, Rain, cannot 
 be cast into Sleet) 

Snow 

method2 
method3 

method1 
method2 
(method3) 

Rain 

method1 
(method2) 
method3 

Fog 

method2 
method3 

Sleet 
object cast 

variable 


