
Building Java Programs

Inheritance and Polymorphism

3

Input and output streams
�  stream: an abstraction of a source or target of data

�  8-bit bytes flow to (output) and from (input) streams

�  can represent many data sources:
�  files on hard disk
�  another computer on network
�  web page
�  input device (keyboard, mouse, etc.)

�  represented by java.io classes
�  InputStream
�  OutputStream

4

Streams and inheritance
�  input streams extend common superclass InputStream;

output streams extend common superclass OutputStream
�  guarantees that all sources of data have the same methods
�  provides minimal ability to read/write one byte at a time

5

Inheritance
�  inheritance: Forming new classes based on existing ones.

�  a way to share/reuse code between two or more classes

�  superclass: Parent class being extended.
�  subclass: Child class that inherits behavior from superclass.

�  gets a copy of every field and method from superclass

�  is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

6

Inheritance syntax
 public class name extends superclass {

 public class Lawyer extends Employee {
 ...
 }

�  override: To replace a superclass's method by writing a
new version of that method in a subclass.

 public class Lawyer extends Employee {
 // overrides getSalary method in Employee class;
 // give Lawyers a $5K raise
 public double getSalary() {
 return 55000.00;
 }
 }

7

super keyword
�  Subclasses can call inherited behavior with super

 super.method(parameters)
 super(parameters);

 public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years); // calls Employee constructor
 }

 // give Lawyers a $5K raise
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.00;
 }
 }

�  Lawyers now always make $5K more than Employees.

8

I/O and exceptions
�  exception: An object representing an error.

�  checked exception: One that must be
handled for the program to compile.

�  Many I/O tasks throw exceptions.
�  Why?

�  When you perform I/O, you must either:
�  also throw that exception yourself
�  catch (handle) the exception

9

Throwing an exception
public type name(params) throws type {

�  throws clause: Keywords on a method's header that state

that it may generate an exception.

�  Example:

 public void processFile(String filename)
 throws FileNotFoundException {

 "I hereby announce that this method might throw an
exception, and I accept the consequences if it happens."

10

Catching an exception
try {
 statement(s);
} catch (type name) {
 code to handle the exception
}

�  The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs
that.

try {
 Scanner in = new Scanner(new File(filename));
 System.out.println(input.nextLine());
} catch (FileNotFoundException e) {
 System.out.println("File was not found.");
}

11

Exception inheritance
�  Exceptions extend from a common superclass Exception

12

Dealing with an exception
�  All exception objects have these methods:

�  Some reasonable ways to handle an exception:
�  try again; re-prompt user; print a nice error message;

quit the program; do nothing (!)

Method Description

public String getMessage() text describing the error

public String toString() a stack trace of the line
numbers where error occurred

getCause(), getStackTrace(),
printStackTrace()

other methods

13

Inheritance and exceptions
�  You can catch a general exception to handle any subclass:

try {
 Scanner input = new Scanner(new File("foo"));
 System.out.println(input.nextLine());
} catch (Exception e) {
 System.out.println("File was not found.");
}

�  Similarly, you can state that a method throws any
exception:

public void foo() throws Exception { ...

�  Are there any disadvantages of doing so?

14

The class Object
�  The class Object forms the root of the

overall inheritance tree of all Java classes.
�  Every class is implicitly a subclass of Object

�  The Object class defines several methods
that become part of every class you write.
For example:

�  public String toString()
Returns a text representation of the object,
usually so that it can be printed.

15

Object methods

�  What does this list of methods tell you about Java's design?

method description

protected Object clone() creates a copy of the object

public boolean equals(Object o) returns whether two objects
have the same state

protected void finalize() used for garbage collection

public Class<?> getClass() info about the object's type

public int hashCode() a code suitable for putting this
object into a hash collection

public String toString() text representation of object

public void notify()
public void notifyAll()
public void wait()
public void wait(...)

methods related to
concurrency and locking (seen
later)

16

Using the Object class
�  You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";

�  You can write methods that accept an Object parameter.

public void checkNotNull(Object o) {
 if (o != null) {
 throw new IllegalArgumentException();
 }

�  You can make arrays or collections of Objects.

Object[] a = new Object[5];
a[0] = "hello";
a[1] = new Random();
List<Object> list = new ArrayList<Object>();

17

Recall: comparing objects
�  The == operator does not work well with objects.

�  It compares references, not objects' state.
�  It produces true only when you compare an object to itself.

 Point p1 = new Point(5, 3);
 Point p2 = new Point(5, 3);
 Point p3 = p2;

 // p1 == p2 is false;
 // p1 == p3 is false;
 // p2 == p3 is true

 // p1.equals(p2)?
 // p2.equals(p3)?

...

x 5 y 3 p1

p2

...

x 5 y 3

p3

18

Default equals method
�  The Object class's equals implementation is very simple:

public class Object {
 ...
 public boolean equals(Object o) {
 return this == o;
 }
}

�  However:
�  When we have used equals with various objects, it didn't behave like
== . Why not? if (str1.equals(str2)) { ...

�  The Java API documentation for equals is elaborate. Why?

19

Implementing equals
 public boolean equals(Object name) {
 statement(s) that return a boolean value ;
 }

�  The parameter to equals must be of type Object.

�  Having an Object parameter means any object can be passed.
�  If we don't know what type it is, how can we compare it?

20

Casting references
Object o1 = new Point(5, -3);
Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok
int len = ((String) o2).length(); // ok
Point p = (Point) o1;
int x = p.getX(); // ok

�  Casting references is different than casting primitives.
�  Really casting an Object reference into a Point reference.
�  Doesn't actually change the object that is referred to.
�  Tells the compiler to assume that o1 refers to a Point object.

21

The instanceof keyword
 if (variable instanceof type) {
 statement(s);
 }

�  Asks if a variable refers
to an object of a given type.
�  Used as a boolean test.

String s = "hello";
Point p = new Point();

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof
String

false

null instanceof
Object

false

22

equals method for Points
// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point.
public boolean equals(Object o) {
 if (o instanceof Point) {
 // o is a Point; cast and compare it
 Point other = (Point) o;
 return x == other.x && y == other.y;
 } else {
 // o is not a Point; cannot be equal
 return false;
 }
}

23

More about equals
�  Equality is expected to be reflexive, symmetric, and transitive:

 a.equals(a) is true for every object a
 a.equals(b) ↔ b.equals(a)
(a.equals(b) && b.equals(c)) ↔ a.equals(c)

�  No non-null object is equal to null:

 a.equals(null) is false for every object a

�  Two sets are equal if they contain the same elements:

 Set<String> set1 = new HashSet<String>();
 Set<String> set2 = new TreeSet<String>();
 for (String s : "hi how are you".split(" ")) {
 set1.add(s); set2.add(s);
 }
 System.out.println(set1.equals(set2)); // true

24

Polymorphism

25

Polymorphism
�  polymorphism: Ability for the same code to be used with different

types of objects and behave differently with each.

�  A variable or parameter of type T can refer to any subclass of T.

 Employee ed = new Lawyer();
 Object otto = new Secretary();

�  When a method is called on ed, it behaves as a Lawyer.
�  You can call any Employee methods on ed.

You can call any Object methods on otto.
�  You can not call any Lawyer-only methods on ed (e.g. sue).

You can not call any Employee methods on otto (e.g. getHours).

26

Polymorphism examples
�  You can use the object's extra functionality by casting.

Employee ed = new Lawyer();
ed.getVacationDays(); // ok
ed.sue(); // compiler error
((Lawyer) ed).sue(); // ok

�  You can't cast an object into something that it is not.

Object otto = new Secretary();
System.out.println(otto.toString()); // ok
otto.getVacationDays(); // compiler error
((Employee) otto).getVacationDays(); // ok
((Lawyer) otto).sue(); // runtime error

27

"Polymorphism mystery"
�  Figure out the output from all methods of these classes:

 public class Snow {
 public void method2() {
 System.out.println("Snow 2");
 }

 public void method3() {
 System.out.println("Snow 3");
 }
 }

 public class Rain extends Snow {
 public void method1() {
 System.out.println("Rain 1");
 }

 public void method2() {
 System.out.println("Rain 2");
 }
 }

28

"Polymorphism mystery"
 public class Sleet extends Snow {
 public void method2() {
 System.out.println("Sleet 2");
 super.method2();
 method3();
 }

 public void method3() {
 System.out.println("Sleet 3");
 }
 }

 public class Fog extends Sleet {
 public void method1() {
 System.out.println("Fog 1");
 }

 public void method3() {
 System.out.println("Fog 3");
 }
 }

29

Technique 1: diagram
�  Diagram the classes from top (superclass) to bottom.

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

30

Technique 2: table
method Snow Rain Sleet Fog

method1

method2

method3

Italic - inherited behavior
Bold - dynamic method call

method Snow Rain Sleet Fog

method1 Rain 1

Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2
method3()

Sleet 2

Snow 2
method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

31

Mystery problem, no cast
 Snow var3 = new Rain();
 var3.method2(); // What's the output?

�  If the problem does not have any casting, then:
1.  Look at the variable's type.

If that type does not have the method: ERROR.

2.  Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

32

Example 1
�  What is the output of the following call?

 Snow var1 = new Sleet();
 var1.method2();

�  Answer:

 Sleet 2
 Snow 2
 Sleet 3

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet
object

variable

33

Example 2
�  What is the output of the following call?

 Snow var2 = new Rain();
 var2.method1();

�  Answer:

 ERROR
 (because Snow does not
 have a method1)

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

variable

object

34

Mystery problem with cast
 Snow var2 = new Rain();
 ((Sleet) var2).method2(); // What's the output?

�  If the problem does have a type cast, then:
1.  Look at the cast type.

If that type does not have the method: ERROR.

2.  Make sure the object's type is the cast type or is a subclass of the cast
type. If not: ERROR. (No sideways casts!)

3.  Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

35

Example 3
�  What is the output of the following call?

 Snow var2 = new Rain();
 ((Rain) var2).method1();

�  Answer:

 Rain 1

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

variable

object
cast

36

Example 4
�  What is the output of the following call?

 Snow var2 = new Rain();
 ((Sleet) var2).method2();

�  Answer:

 ERROR
 (because the object's
type, Rain, cannot
 be cast into Sleet)

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet
object cast

variable

