
Building Java Programs

Priority Queues, Huffman Encoding

2

Prioritization problems
�  Emergency room

�  Gunshot victim should be treated before guy with a sore neck
�  Treat urgent cases first

�  Printing
�  Print faculty jobs before student jobs
�  Print grad student jobs before undergrad jobs

�  Homework
�  Work on things that are due soonest, even if given more recently

�  What would be the runtime of solutions to these problems using the

data structures we know (list, sorted list, map, set, BST, etc.)?

3

Inefficient structures
�  List

�  Remove min/max by searching (O(N))
�  Problem: expensive to search

�  Sorted list
�  Binary search it in O(log N) time
�  Problem: expensive to add/remove (O(N))

�  Binary search tree
�  Go right for max in O(log N)
�  Problem: tree becomes unbalanced

4

Priority queue ADT
�  priority queue: a collection of ordered elements that provides fast

access to the minimum (or maximum) element
�  Useful when we want to deal with things unequally

�  Works like a queue: priority queue operations:
�  add adds in order; O(log N) worst
�  peek returns minimum value; O(1) always
�  remove removes/returns minimum value; O(log N) worst
�  isEmpty,
clear,
size,
iterator O(1) always

5

Java's PriorityQueue class
public class PriorityQueue<E> implements Queue<E>

Queue<String> pq = new PriorityQueue<String>();
pq.add("Helene");
pq.add("Melissa");
...

Method/Constructor Description Runtime
PriorityQueue<E>() constructs new empty queue O(1)

add(E value) adds value in sorted order O(log N)

clear() removes all elements O(1)

iterator() returns iterator over elements O(1)

peek() returns minimum element O(1)

remove() removes/returns min element O(log N)

size() number of elements in queue O(1)

6

Inside a priority queue
�  Usually implemented as a heap, a kind of binary tree.

�  Instead of sorted left → right, it's sorted top → bottom
�  guarantee: each child is greater (lower priority) than its ancestors
�  add/remove causes elements to "bubble" up/down the tree
�  (take CSE 332 or 373 to learn about implementing heaps!)

90 60 40

80 20

10

50 99

85

65 Another use for this? Heap sort

7

Exercise: Fire the TAs
� We have decided that novice TAs should all be fired.

�  Write a class TAManager that reads a list of TAs from a
file.

�  Find all with ≤ 2 quarters experience and fire them.
�  Print the final list of TAs to the console, sorted by

experience.

8

Priority queue ordering
�  For a priority queue to work, elements must have an ordering

�  in Java, this means implementing the Comparable interface

�  Reminder:

public class Foo implements Comparable<Foo> {
 …
 public int compareTo(Foo other) {
 // Return positive, zero, or negative integer

 }
}

9

Homework 8
(Huffman Coding)

10

File compression
�  compression: Process of encoding information in fewer bits.

�  But isn't disk space cheap?

�  Compression applies to many things:
�  store photos without exhausting disk space
�  reduce the size of an e-mail attachment
�  make web pages smaller so they load faster
�  reduce media sizes (MP3, DVD, Blu-Ray)
�  make voice calls over a low-bandwidth connection (cell, Skype)

�  Common compression programs:
�  WinZip or WinRAR for Windows
�  Stuffit Expander for Mac

11

ASCII encoding
�  ASCII: Mapping from characters to integers (binary bits).

�  Maps every possible character to a number ('A' → 65)
�  uses one byte (8 bits) for each character
�  most text files on your computer are in ASCII format

Char ASCII value ASCII (binary)

' ' 32 00100000

'a' 97 01100001

'b' 98 01100010

'c' 99 01100011

'e' 101 01100101

'z' 122 01111010

12

Huffman encoding
�  Huffman encoding: Uses variable lengths for different characters

to take advantage of their relative frequencies.
�  Some characters occur more often than others.

If those characters use < 8 bits each, the file will be smaller.
�  Other characters need > 8, but that's OK; they're rare.

Char ASCII value ASCII (binary) Hypothetical Huffman

' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 01110100

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011110

13

Compressing text
�  Key insight: characters occur unevenly

�  Common characters should use fewer bits
�  Uncommon characters should use more bits
�  Then average length of a file would decrease

�  How can we come up with these encodings?

�  Hint: for each character we make a sequence of choices (0 or
1), kind of like “yes” or “no” answers in 20 Questions.

14

Huffman's algorithm
�  The idea: Create a "Huffman Tree"

that will tell us a good binary
representation for each character.
�  Left means 0, right means 1.

�  example: 'b' is 10

�  More frequent characters will
be "higher" in the tree
(have a shorter binary value).

�  To build this tree, we must do a few steps first:
�  Count occurrences of each unique character in the file.
�  Use a priority queue to order them from least to most frequent.

15

What you will write
�  HuffmanNode

�  Binary tree node (à la 20 Questions)
�  Each storing a character and a count of its occurrences

�  HuffmanTree
�  Two ways to build a Huffman-based tree
�  Output the Huffman codes to a file
�  Decode a sequence of bits into characters

16

Huffman compression
1. Count the occurrences of each character in file
 ' '=2, 'a'=3, 'b'=3, 'c'=1, EOF=1

2. Place characters and counts into priority queue

3. Use priority queue to create Huffman tree →

4. Traverse tree to find (char → binary) map
 {' '=00, 'a'=11, 'b'=10, 'c'=010, EOF=011}

17

Make code: “a dad cab”
i 0 1 2 32 97 98 99 100 255
counts [0,0,0,...,2,..., 3, 1, 1, 2,..., 0, 0]

18

Output encoding
 +---+
 | 9 |
 +---+
 / \
 / \

 +---+ +---+
 | 4 | | 5 |
 +---+ +---+
 / \ / \
+---+ +---+ +---+ +---+
| 2 | | 2 | | 2 | | 3 |
+---+ +---+ +---+ +---+
 ‘ ‘ d / \ a

 +---+ +---+
 | 1 | | 1 |
 +---+ +---+

 b c

19

Encoding
�  For each character in the file

�  Determine its binary Huffman encoding
�  Output the bits to an output file
�  Already implemented for you

�  Problem: how does one read and write bits?

20

Bit I/O streams
�  Java's input/output streams read/write 1 byte (8 bits) at a time.

�  We want to read/write one single bit at a time.

�  BitInputStream: Reads one bit at a time from input.

�  BitOutputStream: Writes one bit at a time to output.

public BitInputStream(String file) Creates stream to read bits from given file

public int readBit() Reads a single 1 or 0

public void close() Stops reading from the stream

public BitOutputStream(String file) Creates stream to write bits to given file

public void writeBit(int bit) Writes a single bit

public void close() Stops reading from the stream

21

Encode (you don’t do this)
 a d a d c a b

32 (‘ ‘)
00

100 (d)
01

98 (b)

100
99 (c)

101
97 (a)

11

22

EOF
� We need a special character to say “STOP”

�  Otherwise, we may read extra characters (can only
write whole bytes – 8 bits – at a time)

� We call this the EOF – end-of-file character
�  Add to the tree manually when we construct from the
int[] counts

� What value will it have?

�  Can’t represent any existing character

 +---+ +---+ +---+ +---+ +---+ +---+

pq --> | 1 | | 1 | | 1 | | 2 | | 2 | | 3 |
 +---+ +---+ +---+ +---+ +---+ +---+
 b c eof ‘ ‘ d a

23

Tree with EOF
 +---+
 | 10|
 +---+
 0 / \ 1
 / \

 +---+ +---+
 | 4 | | 6 |
 +---+ +---+
 0 / \ 1 0 / \ 1
+---+ +---+ +---+ +---+
| 2 | | 2 | | 3 | | 3 |
+---+ +---+ +---+ +---+
 ‘ ‘ d 0 / \ 1 a
 +---+ +---+
 | 1 | | 2 |
 +---+ +---+
 eof 0 / \ 1
 +---+ +---+
 | 1 | | 1 |
 +---+ +---+
 b c

32 (‘ ‘)
00
100 (d)
01
256 (eof)
100
98 (b)
1010
99 (c)
1011
97 (a)
11

24

Remaking the tree
32 (‘ ‘)
00

100 (d)
01

256 (eof)

100
98 (b)

1011

99 (c)
1010

97 (a)

11

25

Decompressing
How do we decompress a file of Huffman-compressed bits?

�  useful "prefix property"
�  No encoding A is the prefix of another encoding B
�  I.e. never will have x → 011 and y → 011100110

�  the algorithm:
�  Read each bit one at a time from the input.
�  If the bit is 0, go left in the tree; if it is 1, go right.
�  If you reach a leaf node, output the character at that leaf and go back

to the tree root.

26

Decoding
 +---+
 | 10|
 +---+
 0 / \ 1
 / \

 +---+ +---+
 | 4 | | 6 |
 +---+ +---+
 0 / \ 1 0 / \ 1
+---+ +---+ +---+ +---+
| 2 | | 2 | | 3 | | 3 |
+---+ +---+ +---+ +---+
 ‘ ‘ d 0 / \ 1 a
 +---+ +---+
 | 1 | | 2 |
 +---+ +---+
 eof 0 / \ 1
 +---+ +---+
 | 1 | | 1 |
 +---+ +---+
 b c

11000111 01001011 11101010 00000000

27

Public methods to write
�  public HuffmanTree(int[] counts)

�  Given character chounts for a file, create Huffman tree

�  public void write(PrintStream output)
�  Write the character-encoding pairs to the output file

�  public HuffanTree(Scanner input)
�  Reconstruct the Huffman tree from a code file

�  public void decode(BitInputStream input,
 PrintStream output, int eof)

�  Use Huffman tree to decompress the input into the given output

