
Building Java Programs 

Priority Queues, Huffman Encoding 
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Prioritization problems 
�  Emergency room 

�  Gunshot victim should be treated before guy with a sore neck 
�  Treat urgent cases first 

�  Printing 
�  Print faculty jobs before student jobs 
�  Print grad student jobs before undergrad jobs 

�  Homework 
�  Work on things that are due soonest, even if given more recently 

 
�  What would be the runtime of solutions to these problems using the 

data structures we know (list, sorted list, map, set, BST, etc.)? 
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Inefficient structures 
�  List 

�  Remove min/max by searching (O(N)) 
�  Problem: expensive to search 

�  Sorted list 
�  Binary search it in O(log N) time 
�  Problem: expensive to add/remove  (O(N)) 

�  Binary search tree 
�  Go right for max in O(log N) 
�  Problem: tree becomes unbalanced 
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Priority queue ADT 
�  priority queue: a collection of ordered elements that provides fast 

access to the minimum (or maximum) element 
�  Useful when we want to deal with things unequally 

�  Works like a queue: priority queue operations: 
�  add  adds in order;  O(log N) worst 
�  peek  returns minimum value;  O(1)     always 
�  remove  removes/returns minimum value;  O(log N) worst 
�  isEmpty, 
clear, 
size, 
iterator   O(1)     always 
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Java's PriorityQueue class 
public class PriorityQueue<E> implements Queue<E> 
 

 
 

 

 
 

 

 
Queue<String> pq = new PriorityQueue<String>(); 
pq.add("Helene"); 
pq.add("Melissa"); 
... 

Method/Constructor Description Runtime 
PriorityQueue<E>() constructs new empty queue   O(1) 

add(E value) adds value in sorted order   O(log N ) 

clear() removes all elements   O(1) 

iterator() returns iterator over elements   O(1) 

peek() returns minimum element   O(1) 

remove() removes/returns min element   O(log N ) 

size() number of elements in queue   O(1) 
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Inside a priority queue 
�  Usually implemented as a heap, a kind of binary tree. 

�  Instead of sorted left → right, it's sorted top → bottom 
�  guarantee: each child is greater (lower priority) than its ancestors 
�  add/remove causes elements to "bubble" up/down the tree 
�  (take CSE 332 or 373 to learn about implementing heaps!) 
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65 Another use for this? Heap sort 
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Exercise: Fire the TAs 
� We have decided that novice TAs should all be fired. 

�  Write a class TAManager that reads a list of TAs from a 
file. 

�  Find all with ≤ 2 quarters experience and fire them. 
�  Print the final list of TAs to the console, sorted by 

experience. 
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Priority queue ordering 
�  For a priority queue to work, elements must have an ordering 

�  in Java, this means implementing the Comparable interface 

�  Reminder: 
 

public class Foo implements Comparable<Foo> { 
    … 
    public int compareTo(Foo other) { 
        // Return positive, zero, or negative integer 

    } 
} 
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Homework 8 
(Huffman Coding) 
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File compression 
�  compression: Process of encoding information in fewer bits. 

�  But isn't disk space cheap? 
 

�  Compression applies to many things: 
�  store photos without exhausting disk space 
�  reduce the size of an e-mail attachment 
�  make web pages smaller so they load faster 
�  reduce media sizes (MP3, DVD, Blu-Ray) 
�  make voice calls over a low-bandwidth connection (cell, Skype) 
 

�  Common compression programs: 
�  WinZip or WinRAR for Windows 
�  Stuffit Expander for Mac 



11 

ASCII encoding 
�  ASCII: Mapping from characters to integers (binary bits). 

�  Maps every possible character to a number ('A' → 65) 
�  uses one byte (8 bits) for each character 
�  most text files on your computer are in ASCII format 

Char ASCII value ASCII (binary) 

' '  32 00100000 

'a'  97 01100001 

'b'  98 01100010 

'c'  99 01100011 

'e' 101 01100101 

'z' 122 01111010 
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Huffman encoding 
�  Huffman encoding: Uses variable lengths for different characters 

to take advantage of their relative frequencies. 
�  Some characters occur more often than others. 

If those characters use < 8 bits each, the file will be smaller. 
�  Other characters need > 8, but that's OK;  they're rare. 

Char ASCII value ASCII (binary)  Hypothetical Huffman 

' '  32 00100000          10 

'a'  97 01100001        0001 

'b'  98 01100010    01110100 

'c'  99 01100011      001100 

'e' 101 01100101        1100 

'z' 122 01111010 00100011110 
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Compressing text 
�  Key insight: characters occur unevenly 

�  Common characters should use fewer bits 
�  Uncommon characters should use more bits 
�  Then average length of a file would decrease 

 
�  How can we come up with these encodings? 

�  Hint: for each character we make a sequence of choices (0 or 
1), kind of like “yes” or “no” answers in 20 Questions. 
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Huffman's algorithm 
�  The idea:  Create a "Huffman Tree" 

that will tell us a good binary 
representation for each character. 
�  Left means 0, right means 1. 

�  example: 'b' is 10 

�  More frequent characters will 
be "higher" in the tree 
(have a shorter binary value). 

�  To build this tree, we must do a few steps first: 
�  Count occurrences of each unique character in the file. 
�  Use a priority queue to order them from least to most frequent. 
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What you will write 
�  HuffmanNode 

�  Binary tree node (à la 20 Questions) 
�  Each storing a character and a count of its occurrences 
 

�  HuffmanTree 
�  Two ways to build a Huffman-based tree 
�  Output the Huffman codes to a file 
�  Decode a sequence of bits into characters 
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Huffman compression 
1. Count the occurrences of each character in file 
 ' '=2, 'a'=3, 'b'=3, 'c'=1, EOF=1 

2. Place characters and counts into priority queue 
 

3. Use priority queue to create Huffman tree → 

4. Traverse tree to find (char → binary) map 
 {' '=00, 'a'=11, 'b'=10, 'c'=010, EOF=011} 
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Make code: “a dad cab” 
i       0 1 2     32    97 98 99 100        255 
counts [0,0,0,...,2,..., 3, 1, 1, 2,..., 0, 0] 
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Output encoding 
        +---+ 
        | 9 | 
        +---+ 
       /     \ 
    /           \ 

    +---+            +---+ 
    | 4 |       | 5 | 
    +---+       +---+ 
    /   \             /   \ 
+---+   +---+  +---+   +---+ 
| 2 |   | 2 |  | 2 |   | 3 | 
+---+   +---+  +---+   +---+ 
 ‘ ‘      d        / \      a 

     +---+ +---+ 
     | 1 | | 1 | 
     +---+ +---+ 

                 b     c 
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Encoding 
�  For each character in the file 

�  Determine its binary Huffman encoding 
�  Output the bits to an output file 
�  Already implemented for you 
 

�  Problem: how does one read and write bits? 
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Bit I/O streams 
�  Java's input/output streams read/write 1 byte (8 bits) at a time. 

�  We want to read/write one single bit at a time. 

�  BitInputStream: Reads one bit at a time from input. 

 

�  BitOutputStream: Writes one bit at a time to output. 

public BitInputStream(String file) Creates stream to read bits from given file 

public int readBit() Reads a single 1 or 0 

public void close() Stops reading from the stream 

public BitOutputStream(String file) Creates stream to write bits to given file 

public void writeBit(int bit) Writes a single bit 

public void close() Stops reading from the stream 



21 

Encode (you don’t do this) 
         a   d a d   c a b 

32  (‘ ‘) 
00 

100 (d) 
01 

98  (b) 

100 
99  (c) 

101 
97  (a) 

11 
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EOF 
� We need a special character to say “STOP” 

�  Otherwise, we may read extra characters (can only 
write whole bytes – 8 bits – at a time) 

� We call this the EOF – end-of-file character 
�  Add to the tree manually when we construct from the 
int[] counts 

 
� What value will it have? 

�  Can’t represent any existing character 
 
        +---+ +---+ +---+ +---+ +---+ +---+ 

pq --> | 1 | | 1 | | 1 | | 2 | | 2 | | 3 | 
       +---+ +---+ +---+ +---+ +---+ +---+ 
         b     c    eof   ‘ ‘    d     a 
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Tree with EOF 
        +---+ 
        | 10| 
        +---+ 
   0   /     \   1 
    /           \ 

    +---+                +---+ 
    | 4 |                | 6 | 
    +---+                +---+ 
  0 /   \ 1            0 /   \ 1 
+---+   +---+       +---+     +---+ 
| 2 |   | 2 |       | 3 |     | 3 | 
+---+   +---+       +---+     +---+ 
 ‘ ‘      d      0 /     \ 1    a 
               +---+     +---+ 
               | 1 |     | 2 | 
               +---+     +---+ 
                eof     0 / \ 1 
                      +---+ +---+ 
                      | 1 | | 1 | 
                      +---+ +---+ 
                        b     c 

32   (‘ ‘) 
00 
100  (d) 
01 
256  (eof) 
100 
98   (b) 
1010 
99   (c) 
1011 
97   (a) 
11 
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Remaking the tree 
32  (‘ ‘) 
00 

100 (d) 
01 

256 (eof) 

100 
98  (b) 

1011 

99  (c) 
1010 

97  (a) 

11 
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Decompressing 
How do we decompress a file of Huffman-compressed bits? 

�  useful "prefix property" 
�  No encoding A is the prefix of another encoding B 
�  I.e. never will have  x → 011 and y → 011100110 

�  the algorithm: 
�  Read each bit one at a time from the input. 
�  If the bit is 0, go left in the tree;  if it is 1, go right. 
�  If you reach a leaf node, output the character at that leaf and go back 

to the tree root. 
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Decoding 
        +---+ 
        | 10| 
        +---+ 
  0    /     \   1 
    /           \ 

    +---+                +---+ 
    | 4 |                | 6 | 
    +---+                +---+ 
  0 /   \ 1             0 /   \ 1 
+---+   +---+       +---+     +---+ 
| 2 |   | 2 |       | 3 |     | 3 | 
+---+   +---+       +---+     +---+ 
 ‘ ‘      d      0 /     \ 1    a 
               +---+     +---+ 
               | 1 |     | 2 | 
               +---+     +---+ 
                eof     0 / \ 1 
                      +---+ +---+ 
                      | 1 | | 1 | 
                      +---+ +---+ 
                        b     c 

11000111 01001011 11101010 00000000 
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Public methods to write 
�  public HuffmanTree(int[] counts) 

�  Given character chounts for a file, create Huffman tree 

�  public void write(PrintStream output) 
�  Write the character-encoding pairs to the output file 

�  public HuffanTree(Scanner input) 
�  Reconstruct the Huffman tree from a code file 

�  public void decode(BitInputStream input, 
                     PrintStream output, int eof) 

�  Use Huffman tree to decompress the input into the given output 


