Building Java Programs

Binary Trees

reading: 17.1 - 17.3

Trees

tree: A directed, acyclic structure of linked nodes.
directed : Has one-way links between nodes.
acyclic : No path wraps back around to the same node twice.

binary tree: One where each node has at most two
children.

root

Recursive definition: A tree is either:
empty (null), or
a root node that contains:
. data,

. a left subtree, and
- a right subtree.

(The left and/or right e e 6 0

subtree could be empty.)

e —

Trees In computer science

= () My Documents

- folders/files on a computer = & badup
= csel100
» family genealogy; organizational charts gzzig
o Al: decision trees = £ 09wi
) assassin

) exams
2 grades
= handouts
= 3 homework
2 1-sortedintlist

o compilers: parse tree

a=(b+c)*d; @

» cell phone T9

Terminology

node: an object containing a data value and left/right
children

root: topmost node of a tree

leaf: a node that has no children

branch: any internal node; neither the root nor a ‘leaf
roo

parent: a node that refers to this one
child: a node that this node refers to level 1
sibling: a node with a common parent

subtree: the smaller tree of nodes on level 2 e
the left or right of the current node

height: length of the longest path

from the root to any node level 3 e e 6 0
level or depth: length of the path

from a root to a given node

A tree node for integers

» A basic tree node object stores data, refers to left/right
- Multiple nodes can be linked together into a larger tree

/

data
42

left
-

right

-

left

data

right

59

left

data

right

27

left

data

right

86

IntTreeNode class

Llihn s TntTreaNode tobje e iisvsnetgode dn g binary trec o vint sy
public class IntTreeNode ({

ROy R Ve S P U] et av e e e e
VB e AN e T S e e el e e // reference to left subtree
public IntTreeNode right; // reference to right subtree

// Constructs a leaf node with the given data.
public IntTreeNode (int data) {
this (data, null, null);

}

hloenshriel siavbranchinodewiththe given idab gy and inkss
public IntTreeNode (int data, IntTreeNode left,

VRN e S YN OB Pd R o d ey e
this.data = data;
this.left = left;
phiasvright = rights

} left |data | right

ITntTree class

// An IntTree object represents an entire binary tree of ints.
public class IntTree {

private IntTreeNode overallRoot; R e e Vv g e
} methods overallRoot

Client code talks to the IntTree,
not to the node objects inside it.

Methods of the IntTree create
and manipulate the nodes,

their data and links between them. @ @ @ @

e

IntTree constructors

 For now, assume we have the following constructors:

public IntTree (IntTreeNode overallRoot)
public IntTree (int height)

The 2nd constructor will create a tree and
fill it with nodes with random data values overallRoot
from 1-100 until it is full at the given height.

IR M= = T oy M e S e s e T e U

Exercise

Add a method print to the IntTree class that prints the
elements of the tree, separated by spaces.

A node's left subtree should be printed before it, and its right
subtree should be printed after it.

overallRoot
Example: tree.print () ;

e SO @

Exercise solution

// An IntTree object represents an entire binary tree of ints.
public class IntTree {
private IntTreeNode overallRoot; // null for an empty tree

S

jeublolielihiionie e hen o VI
print (overallRoot) ;
Svetemioutivprintlnt): [/ end the line of output

}

private void print (IntTreeNode root) {
Likvatbaseveasevsvampl b byvbosrdovinobhrnevon mab i)
AR Mid o N Y A 1y Y B W]
// recursive case: print left, center, right
print (overallRoot.left) ;
ORVA A Y I e WM R U el S WM ol M e o M M A
print (overallRoot.right) ;

10

~ Template for tree methods

o i NN el Ve Ao ey s M e e T
private IntTreeNode overallRoot;

public type name (parameters) {
name (overallRoot, parameters) ;

}

private type name (IntTreeNode root, parameters) {

}
}

» Tree methods are often implemented recursively
with a public/private pair
the private version accepts the root node to process

11

Exercise

- Add a method contains to the IntTree class that searches
the tree for a given integer, returning true if it is found.

If an IntTree variable tree referred to the tree below, the
following calls would have these results:

s reevcontalnsoTIn TR Te DveralRoof
e tree.contains (60) — true

e tree.contains (63) — false

e tree.contains (42) — false

87 29
@ ® @ @

12

Exercise solution

// Returns whether this tree contains the given integer.

public boolean contains (int wvalue) {
return contains (overallRoot, value) ;

}

private boolean contains (IntTreeNode node, 1int wvalue) {

1f (node == null) {

TS u v E A SRRy MY e // base case: not found here
} else 1if (node.data == value) {

returnsbeuey // base case: found here
} else {

// recursive case: search left/right subtrees
return contains (node.left, wvalue) ||
contains (node.right, wvalue) ;

13

Exercise

Add a method named printSideways to the IntTree class
that prints the tree in a sideways indented format, with right
nodes above roots above left nodes, with each level 4
spaces more indented than the one above it.

Example: Output from the tree below: overall root

X O
14
AEY: G @

: ONOND

14

Exercise solution

// Prints the tree in a sideways indented format.
publie word printSudeway sty
printSideways (overallRoot, "");

}

private void printSideways (IntTreeNode root,
String indent) {
AMAB Y Y @ Y0 an i o DAL e e

printSideways (root.right, indent + " i

SYeotemioutiprint lntrndentatirooridat e
printSideways (root.left, indent + " A%

15

Traversals

traversal: An examination of the elements of a tree.
A pattern used in many tree algorithms and methods

Common orderings for traversals:

pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

overallRoot

16

Traversal example

overallRoot

17
(4 O

9 © 6@ @

e pre-order: 17 41 29 6 9 81 40
e in-order: 29 41 6 17 81 9 40
» post-order: 29 6 41 81 40 9 17

17

Traversal trick

» To quickly generate a traversal: overallRoot
Trace a path around the tree.
As you pass a node on the @

proper side, process it.

- pre-order: left side @ e

. in-order: bottom

- post-order: right side @ e @ @

» pre-order: 17 41 29 6 9 81 40
e in-order: 29 41 6 17 81 9 40
» post-order: 29 6 41 81 40 9 17

18

Exercise

Give pre-, in-, and post-order
traversals for the following tree:

pre: 42 152748986 125 3 39
in: 1548 2742865129 3 39
post: 48 27 155 12 86 39 3 42

overallRoot

1.9

