
Building Java Programs

Binary Trees

reading: 17.1 – 17.3

2

Trees
•  tree: A directed, acyclic structure of linked nodes.

–  directed : Has one-way links between nodes.
–  acyclic : No path wraps back around to the same node twice.

– binary tree: One where each node has at most two
children.

•  Recursive definition: A tree is either:
–  empty (null), or
–  a root node that contains:

•  data,
•  a left subtree, and
•  a right subtree.

–  (The left and/or right
subtree could be empty.)

7 6

3 2

1

5 4

root

3

Trees in computer science
•  folders/files on a computer

•  family genealogy; organizational charts
•  AI: decision trees
•  compilers: parse tree

–  a = (b + c) * d;

•  cell phone T9

d +

* a

=

c b

4

Terminology
•  node: an object containing a data value and left/right

children
•  root: topmost node of a tree
•  leaf: a node that has no children
•  branch: any internal node; neither the root nor a leaf

•  parent: a node that refers to this one
•  child: a node that this node refers to
•  sibling: a node with a common parent

•  subtree: the smaller tree of nodes on
 the left or right of the current node

•  height: length of the longest path
 from the root to any node

•  level or depth: length of the path
 from a root to a given node

7 6

3 2

1

5 4

root
height = 3

level 1

level 2

level 3

5

A tree node for integers
•  A basic tree node object stores data, refers to left/right

•  Multiple nodes can be linked together into a larger tree

left data right

42

left data right

59

left data right

27

left data right

86

6

IntTreeNode class
// An IntTreeNode object is one node in a binary tree of ints.
public class IntTreeNode {
 public int data; // data stored at this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 // Constructs a leaf node with the given data.
 public IntTreeNode(int data) {
 this(data, null, null);
 }

 // Constructs a branch node with the given data and links.
 public IntTreeNode(int data, IntTreeNode left,
 IntTreeNode right) {
 this.data = data;
 this.left = left;
 this.right = right;
 }
}

left data right

7

IntTree class
// An IntTree object represents an entire binary tree of ints.
public class IntTree {
 private IntTreeNode overallRoot; // null for an empty tree

 methods
}

–  Client code talks to the IntTree,
not to the node objects inside it.

–  Methods of the IntTree create
and manipulate the nodes,
their data and links between them. 7 6

3 2

1

5 4

overallRoot

8

IntTree constructors
•  For now, assume we have the following constructors:

 public IntTree(IntTreeNode overallRoot)
 public IntTree(int height)

–  The 2nd constructor will create a tree and
fill it with nodes with random data values
from 1-100 until it is full at the given height.

 IntTree tree = new IntTree(3);

40 81

9 41

17

6 29

overallRoot

9

Exercise
•  Add a method print to the IntTree class that prints the

elements of the tree, separated by spaces.
–  A node's left subtree should be printed before it, and its right

subtree should be printed after it.

–  Example: tree.print();

 29 41 6 17 81 9 40

40 81

9 41

17

6 29

overallRoot

10

Exercise solution
// An IntTree object represents an entire binary tree of ints.
public class IntTree {
 private IntTreeNode overallRoot; // null for an empty tree
 ...

 public void print() {
 print(overallRoot);
 System.out.println(); // end the line of output
 }

 private void print(IntTreeNode root) {
 // (base case is implicitly to do nothing on null)
 if (root != null) {
 // recursive case: print left, center, right
 print(overallRoot.left);
 System.out.print(overallRoot.data + " ");
 print(overallRoot.right);
 }
 }
}

11

Template for tree methods
public class IntTree {
 private IntTreeNode overallRoot;
 ...

 public type name(parameters) {
 name(overallRoot, parameters);
 }

 private type name(IntTreeNode root, parameters) {
 ...
 }
}

•  Tree methods are often implemented recursively
–  with a public/private pair
–  the private version accepts the root node to process

12

Exercise
•  Add a method contains to the IntTree class that searches

the tree for a given integer, returning true if it is found.

–  If an IntTree variable tree referred to the tree below, the
following calls would have these results:

�  tree.contains(87) → true
�  tree.contains(60) → true
�  tree.contains(63) → false
�  tree.contains(42) → false

60 60

29 87

55

42 -3

overallRoot

13

Exercise solution
// Returns whether this tree contains the given integer.
public boolean contains(int value) {
 return contains(overallRoot, value);
}

private boolean contains(IntTreeNode node, int value) {
 if (node == null) {
 return false; // base case: not found here
 } else if (node.data == value) {
 return true; // base case: found here
 } else {
 // recursive case: search left/right subtrees
 return contains(node.left, value) ||
 contains(node.right, value);
 }
}

14

Exercise
•  Add a method named printSideways to the IntTree class

that prints the tree in a sideways indented format, with right
nodes above roots above left nodes, with each level 4
spaces more indented than the one above it.

–  Example: Output from the tree below:

19 11

14 6

9

7

overall root

 19
 14

 11

9

 7

 6

15

Exercise solution
// Prints the tree in a sideways indented format.
public void printSideways() {
 printSideways(overallRoot, "");
}

private void printSideways(IntTreeNode root,
 String indent) {
 if (root != null) {
 printSideways(root.right, indent + " ");
 System.out.println(indent + root.data);
 printSideways(root.left, indent + " ");
 }
}

16

Traversals
•  traversal: An examination of the elements of a tree.

–  A pattern used in many tree algorithms and methods

•  Common orderings for traversals:
–  pre-order: process root node, then its left/right subtrees
–  in-order: process left subtree, then root node, then right
–  post-order: process left/right subtrees, then root node

40 81

9 41

17

6 29

overallRoot

17

Traversal example

•  pre-order: 17 41 29 6 9 81 40
•  in-order: 29 41 6 17 81 9 40
•  post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

overallRoot

18

Traversal trick
•  To quickly generate a traversal:

–  Trace a path around the tree.
–  As you pass a node on the

proper side, process it.

•  pre-order: left side
•  in-order: bottom
•  post-order: right side

•  pre-order: 17 41 29 6 9 81 40
•  in-order: 29 41 6 17 81 9 40
•  post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

overallRoot

19

•  Give pre-, in-, and post-order
traversals for the following tree:

–  pre: 42 15 27 48 9 86 12 5 3 39
–  in: 15 48 27 42 86 5 12 9 3 39
–  post: 48 27 15 5 12 86 39 3 42

Exercise

3 86

9 15

42

27

48

overallRoot

12 39

5

