
Building Java Programs

Appendix R
Recursive backtracking

2

Backtracking
�  Useful to solve problems that require making decisions

�  Insufficient information to make a thoughtful choice
�  Each decision leads to new choices
�  Some sequence of choices will be a solution

�  Backtracking involves trying out sequences of decisions
until one that works is found

�  Depth first search: we go deep down one path rather than
broad

�  Natural to implement recursively: call stack keeps track of
decision points in right order (opposite from visited)

3

Backtracking strategies
�  When solving a backtracking problem, ask these questions:

�  What are the "choices" in this problem?
�  What is the "base case"? (How do I know when I'm out of

choices?)

�  How do I "make" a choice?
�  Do I need to create additional variables to remember my choices?
�  Do I need to modify the values of existing variables?

�  How do I explore the rest of the choices?
�  Do I need to remove the made choice from the list of choices?

�  Once I'm done exploring, what should I do?

�  How do I "un-make" a choice?

4

Exercise: Permutations
�  Write a method permute that accepts a string as a

parameter and outputs all possible rearrangements of the
letters in that string. The arrangements may be output in
any order.

�  Example:
permute("TEAM")
outputs the following
sequence of lines:

TEAM
TEMA
TAEM
TAME
TMEA
TMAE
ETAM
ETMA
EATM
EAMT
EMTA
EMAT

ATEM
ATME
AETM
AEMT
AMTE
AMET
MTEA
MTAE
META
MEAT
MATE
MAET

5

Examining the problem
�  We want to generate all possible sequences of letters.

 for (each possible first letter):
 for (each possible second letter):

 for (each possible third letter):
 ...
 print!

�  Each permutation is a set of choices or decisions:
�  Which character do I want to place first?
�  Which character do I want to place second?
�  ...

�  solution space: set of all possible sets of decisions to explore

6

Decision tree
chosen available

T E A M

T E A M

T E A M

T E A M

T E A M

T A E M T M E A

E T A M

T E M A

T E M A

T M E A

...

T A E M

T A E M

T A M E

T A M E T M E A

T M A E

T M A E

7

Exercise solution
// Outputs all permutations of the given string.
public static void permute(String s) {
 permute(s, "");
}

private static void permute(String s, String chosen) {
 if (s.length() == 0) {
 // base case: no choices left to be made
 System.out.println(chosen);
 } else {
 // recursive case: choose each possible next letter
 for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i); // choose
 s = s.substring(0, i) + s.substring(i + 1);
 chosen += c;

 permute(s, chosen); // explore

 s = s.substring(0, i) + c + s.substring(i);
 chosen = chosen.substring(0, chosen.length() - 1);
 } // un-choose
 }
}

8

Exercise solution 2
// Outputs all permutations of the given string.
public static void permute(String s) {
 permute(s, "");
}

private static void permute(String s, String chosen) {
 if (s.length() == 0) {
 // base case: no choices left to be made
 System.out.println(chosen);
 } else {
 // recursive case: choose each possible next letter
 for (int i = 0; i < s.length(); i++) {
 String ch = s.substring(i, i + 1); // choose

 String rest = s.substring(0, i) + // remove
 s.substring(i + 1);

 permute(rest, chosen + ch); // explore
 }
 } // (don't need to "un-choose" because
} // we used temp variables)

9

Maze class
�  Suppose we have a Maze class with these methods:

Method/Constructor Description
public Maze(String text) construct a given maze
public int getHeight(), getWidth() get maze dimensions
public boolean isExplored(int r, int c)
public void setExplored(int r, int c)

get/set whether you
have visited a location

public void isWall(int r, int c) whether given location
is blocked by a wall

public void mark(int r, int c)
public void isMarked(int r, int c)

whether given location
is marked in a path

public String toString() text display of maze

10

Exercise: solve maze
�  Write a method solveMaze that accepts a Maze and a

starting row/column as parameters and tries to find a path
out of the maze starting from that position.

�  If you find a solution:
�  Your code should stop exploring.
�  You should mark the path out of the

maze on your way back out of the
recursion, using backtracking.

�  (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

11

Recall: Backtracking
A general pseudo-code algorithm for backtracking problems:

Explore(choices):
�  if there are no more choices to make: stop.

�  else, for each available choice C:
�  Choose C.
�  Explore the remaining choices.
�  Un-choose C, if necessary. (backtrack!)

What are the choices in this problem?

