Building Java Programs

Interfaces, Comparable

reading: 9.5 - 9.6, 16.4, 10.2
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Consider classes for shapes with common features:

e Circle (defined by radius r ):
area =nr?2,  perimeter =gy

* Rectangle (defined by width w and height h ):

W
area = W h, perimeter = 2w + 2h
h
* Triangle (defined by side lengths a, b, and ¢)
area =V(s(s-a)(s-b)(s-0))
wheres =% (a + b + ©), . b
perimeter =a+ b+ cC

C
Every shape has these, but each computes them differently.



Interfaces (9.5)

* interface: A list of methods that a class can promise to
implement.

Inheritance gives you an is-a relationship and code sharing.
« A Lawyer can be treated as an Employee and inherits its code.

Interfaces give you an is-a relationship without code sharing.
« A Rectangle object can be treated as a shape but inherits no code.

Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."”

- "I'm 'certified' as a Shape, because I implement the Shape
interface.

This assures you I know how to compute my area and perimeter."



Interface syntax

public 1nterface name {
public type name (type name, ..., type name);
public type name (type name, ..., type name);

public type name (type name, ..., type name);
}

Example:
BIUY e e i e S M S R Y e S
public 1nt getSpeed();
public void setDirection (int direction);



public interface Shape {
public double area();

publresdouble parameror () ;

}

Saved as Shape.java

Shape interface

// Describes features common to all shapes.

«interface»
Shape

areaf)
perimeter()
FAN

____________________________________________________________

Circle

radius

Rectangle

Circle{radius)
aread)
perimeter()

width, height

Rectanglefw, h)
areaf)
perimeter(

Triangle

ab,c

Triangle{a, b, c)
areaf)
perimeter)

* abstract method: A header without an implementation.
The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.
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“Implementing an interface

public class name implements interface {

}

* A class can declare that it "implements" an interface.
The class must contain each method in that interface.

public class Bicycle implements Vehicle {

}

(Otherwise it will fail to compile.)
Bahanaswanva i ewBgnan g erior e bst g e andvdoe Sion:

override abstract method area() in Shape
public class Banana implements Shape {

A



~ Interfaces + polymorphism

o Interfaces benefit the client code author the most.

They allow polymorphism.

(the same code can work with different types of objects)

public static void printInfo (Shape
System.out.println ("The shape:
System.out.println("area : " +
System.out.println ("perim: " +
SysEeminutiprantin )y

Carveleveireisinew (Cirelie G20y
Triangle tri = new Triangle (5, 12,
printinfolcire);

i EovtErage.

s) {

S sy
s.areal());
s.perimeter()) ;
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Linked vs. array lists

* We have implemented two collection classes:
ArrayIntlList

index| 0 (1] 2| 3

value |42 -3(17| 9

LinkedIntlList

data | next data | next data | next data | next

2] 4—|3] +—{v | 4+ 9 [

They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

front




An IntList interface

// Represents a list of integers.
public 1nterface IntList {

D
el
public
public
public
i
D
public

vold add(int wvalue);

HOME S Yo e Wi sy AN a e W M AR e s R e
int get (int index);

e e e T e e e

boolean 1sEmpty();

Vo hdwnemavetihnEn indeso e

VT M G R R G R R L A e S R A
e e e

public class ArrayIntlList implements IntList { ...

public class LinkedIntList implements IntList { ...
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Client code w/ interface

public class ListClient {
public static void main(String[] args) {
A e e A R e e S e A
process (listl) ;

VA A e A e e B e WA e M e e AV
process (list2) ;

}

publrcystabtrcivord processtEntliast Tast) i
list.add(18);
list.add (27) ;
Prshivadd 93y
e e o A Y N B R e
list.remove (1) ;
Systemrontaprantinflasseys
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* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework uses interfaces to describe
ADTs:

Collection, Deque, List, Map, Queue, Set

* An ADT can be implemented in multiple ways by classes:

ArrayList and LinkedList implement List
HashSet and TreeSet implement set
LinkedList , ArrayDeque, etc. implement Queue

« They messed up on : there's no interface, just a class.
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Using ADT interfaces

When using Java's built-in collection classes:

e It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

Ll 8 eSS Ing > s e A e L e S e g e

* Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

eivlodtslietiisnlioncan bleve S s PR Y-S o d ol b B oo e AR RS Re R
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The Comparable
Interface

reading: 10.2




————

Collections class

Method name

Description

binarySearch (list, value)

returns the index of the given value in
a sorted list (< 0 if not found)

copy (listTo, listFrom)

copies listFrom's elements to listTo

emptyList (), emptyMap (),
emptySet ()

returns a read-only collection of the
given type that has no elements

fill (list, value)

sets every element in the list to have
the given value

max (collection),
min (collection)

returns largest/smallest element

replaceAll (list, old, new)

replaces an element value with another

reverse (list)

reverses the order of a list's elements

shuffle (list)

arranges elements into a random order

sort (list)

arranges elements into ascending order
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Ordering and objects

e Can we sort an array of Strings?
Operators like < and > do not work with string objects.
But we do think of strings as having an alphabetical ordering.

 natural ordering: Rules governing the relative placement
of all values of a given type.

e comparison function: Code that, when given two values
A and B of a given type, decides their relative ordering:

A<B, A==B, A>B

16
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_ The compareTo method (10.2)

» The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

Example: in the string class, there is a method:

public 1int compareTo (String other)

e A call of A.compareTo (B) will return:
a value <0 if A comes "before" B in the ordering,
a value >0 if A comes "after" B in the ordering,

or O if A and B are considered "equal" in the
ordering.

17



Using compareTo

* compareTo can be used as a test in an if statement.

AN B W A A R e
SAmaal ale el ofe oui
if (a.compareTo(b) < 0) { // true

}

Primitives Objects
s e G o INE P e e e s = e T M e M A R
IR T TEilaicompareTobi =m0
e 1f (a.compareTo(b) == 0) {
e 1f (a.compareTo(b) != 0) {
if (a >= b) { 1f (a.compareTo(b) >= 0) {
ey sl 4 I e I el e Y= = N Y M e A D AR
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compareTo and collections

* You can use an array or list of strings with Java's included
binarySearch method because it calls compareTo internally.

e —

I o ¥ e R e e
int index = Arrays.binarySearch(a, "dan"); // 3

e Java's TreeSet/Map uUse compareTo internally for ordering.

e A call to your compareTo method should return:
avalue< O if this object is "before" the other object,
avalue> 0 if this object is "after" the other object,
or 0 if this object is "equal” to the other.
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Comparable (10.2)

public interface Comparable<E> {
public ant compareTo (B other):

J

* A class can implement the Comparable interface to define a
natural ordering function for its objects.

e A call to your compareTo method should return:

avalue< O if this object is "before" the other object,
avalue> 0 if this object is "after" the other object,
or 0 if this object is "equal” to the other.

e If you want multiple orderings, use a instead (see

Ch. 13.1)
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Comparable template

public class Name implements Comparable<name> {

public int compareTo (nAamMe other) {

}

21



compareTo tricks

» delegation trick - If your object's fields are comparable
(such as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public 1nt compareTo (Employee other) {
return name.compareTo (other.getName()) ;

}

* toString trick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo (Date other) {
return toString () .compareTo (other.toString()) ;

}
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compareTo tricks

» subtraction trick - Subtracting related values produces the
right result for what you want compareTo to return:

// sort by x and break ties by y
By e e ey v st e e Me M e M s e it e et s

TrEvisevili= e Phe reaseraidd
return x - other.x; // different x
} else {
return y - other.y; // same x; compare y
}
}
» The idea:
o if x > other.x, then x - other.x > 0
o if x < other.x, then x - other.x <
waibsciEEve ph ey R en o P h ey sy

« NOTE: This trick doesn't work for doubles (but see Math.signum)
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