
Building Java Programs

Interfaces, Comparable

reading: 9.5 - 9.6, 16.4, 10.2

2

3

Related classes
Consider classes for shapes with common features:

�  Circle (defined by radius r):
 area = π r 2, perimeter = 2 π r

�  Rectangle (defined by width w and height h):
 area = w h, perimeter = 2w + 2h

�  Triangle (defined by side lengths a, b, and c)
 area = √(s (s - a) (s - b) (s - c))
 where s = ½ (a + b + c),
 perimeter = a + b + c

�  Every shape has these, but each computes them differently.

r

w

h

a
b

c

4

Interfaces (9.5)
�  interface: A list of methods that a class can promise to

implement.

�  Inheritance gives you an is-a relationship and code sharing.
�  A Lawyer can be treated as an Employee and inherits its code.

�  Interfaces give you an is-a relationship without code sharing.
�  A Rectangle object can be treated as a Shape but inherits no code.

�  Analogous to non-programming idea of roles or certifications:
�  "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
�  "I'm 'certified' as a Shape, because I implement the Shape

interface.
This assures you I know how to compute my area and perimeter."

5

Interface syntax
public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
 public type name(type name, ..., type name);
}

Example:
public interface Vehicle {
 public int getSpeed();
 public void setDirection(int direction);
}

6

Shape interface
 // Describes features common to all shapes.
 public interface Shape {
 public double area();
 public double perimeter();
 }

�  Saved as Shape.java

�  abstract method: A header without an implementation.
�  The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.

7

Implementing an interface
 public class name implements interface {
 ...
 }

�  A class can declare that it "implements" an interface.
�  The class must contain each method in that interface.

 public class Bicycle implements Vehicle {
 ...
 }

 (Otherwise it will fail to compile.)
 Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape
 public class Banana implements Shape {
 ^

8

Interfaces + polymorphism
�  Interfaces benefit the client code author the most.

�  They allow polymorphism.
(the same code can work with different types of objects)

 public static void printInfo(Shape s) {
 System.out.println("The shape: " + s);
 System.out.println("area : " + s.area());
 System.out.println("perim: " + s.perimeter());
 System.out.println();
 }
 ...

 Circle circ = new Circle(12.0);
 Triangle tri = new Triangle(5, 12, 13);
 printInfo(circ);
 printInfo(tri);

9

Linked vs. array lists
�  We have implemented two collection classes:

�  ArrayIntList

�  LinkedIntList

�  They have similar behavior, implemented in different ways.

We should be able to treat them the same way in client code.

index 0 1 2 3

value 42 -3 17 9

front

data next

42

data next

-3
data next

17

data next

9

10

An IntList interface
// Represents a list of integers.
public interface IntList {
 public void add(int value);
 public void add(int index, int value);
 public int get(int index);
 public int indexOf(int value);
 public boolean isEmpty();
 public void remove(int index);
 public void set(int index, int value);
 public int size();
}

public class ArrayIntList implements IntList { ...

public class LinkedIntList implements IntList { ...

11

Client code w/ interface
public class ListClient {
 public static void main(String[] args) {
 IntList list1 = new ArrayIntList();
 process(list1);

 IntList list2 = new LinkedIntList();
 process(list2);
 }

 public static void process(IntList list) {
 list.add(18);
 list.add(27);
 list.add(93);
 System.out.println(list);
 list.remove(1);
 System.out.println(list);
 }
}

12

ADTs as interfaces (11.1)
�  abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
�  Describes what a collection does, not how it does it.

�  Java's collection framework uses interfaces to describe
ADTs:
�  Collection, Deque, List, Map, Queue, Set

�  An ADT can be implemented in multiple ways by classes:
�  ArrayList and LinkedList implement List
�  HashSet and TreeSet implement Set
�  LinkedList , ArrayDeque, etc. implement Queue

�  They messed up on Stack; there's no Stack interface, just a class.

13

Using ADT interfaces
When using Java's built-in collection classes:

�  It is considered good practice to always declare collection

variables using the corresponding ADT interface type:

 List<String> list = new ArrayList<String>();

�  Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

public void stutter(List<String> list) {
 ...

}

The Comparable
Interface

reading: 10.2

15

Collections class
Method name Description

binarySearch(list, value) returns the index of the given value in
a sorted list (< 0 if not found)

copy(listTo, listFrom) copies listFrom's elements to listTo

emptyList(), emptyMap(),
emptySet()

returns a read-only collection of the
given type that has no elements

fill(list, value) sets every element in the list to have
the given value

max(collection),
min(collection)

returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another

reverse(list) reverses the order of a list's elements

shuffle(list) arranges elements into a random order

sort(list) arranges elements into ascending order

16

Ordering and objects
�  Can we sort an array of Strings?

�  Operators like < and > do not work with String objects.
�  But we do think of strings as having an alphabetical ordering.

�  natural ordering: Rules governing the relative placement
of all values of a given type.

�  comparison function: Code that, when given two values
A and B of a given type, decides their relative ordering:

�  A < B, A == B, A > B

17

The compareTo method (10.2)

�  The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

�  Example: in the String class, there is a method:
 public int compareTo(String other)

�  A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B in the ordering,
a value > 0 if A comes "after" B in the ordering,
or 0 if A and B are considered "equal" in the

ordering.

18

Using compareTo
�  compareTo can be used as a test in an if statement.

String a = "alice";
String b = "bob";
if (a.compareTo(b) < 0) { // true
 ...
}

Primitives Objects

if (a < b) { ... if (a.compareTo(b) < 0) { ...

if (a <= b) { ... if (a.compareTo(b) <= 0) { ...

if (a == b) { ... if (a.compareTo(b) == 0) { ...

if (a != b) { ... if (a.compareTo(b) != 0) { ...

if (a >= b) { ... if (a.compareTo(b) >= 0) { ...

if (a > b) { ... if (a.compareTo(b) > 0) { ...

19

compareTo and collections
�  You can use an array or list of strings with Java's included
binarySearch method because it calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};
int index = Arrays.binarySearch(a, "dan"); // 3

�  Java's TreeSet/Map use compareTo internally for ordering.

�  A call to your compareTo method should return:

a value < 0 if this object is "before" the other object,
a value > 0 if this object is "after" the other object,
or 0 if this object is "equal" to the other.

20

Comparable (10.2)
 public interface Comparable<E> {
 public int compareTo(E other);
 }

�  A class can implement the Comparable interface to define a

natural ordering function for its objects.

�  A call to your compareTo method should return:
a value < 0 if this object is "before" the other object,
a value > 0 if this object is "after" the other object,
or 0 if this object is "equal" to the other.

�  If you want multiple orderings, use a Comparator instead (see
Ch. 13.1)

21

Comparable template
 public class name implements Comparable<name> {

 ...

 public int compareTo(name other) {
 ...
 }
 }

22

compareTo tricks
�  delegation trick - If your object's fields are comparable

(such as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public int compareTo(Employee other) {
 return name.compareTo(other.getName());
}

�  toString trick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo(Date other) {
 return toString().compareTo(other.toString());
}

23

compareTo tricks
�  subtraction trick - Subtracting related values produces the

right result for what you want compareTo to return:

// sort by x and break ties by y
public int compareTo(Point other) {
 if (x != other.x) {
 return x - other.x; // different x
 } else {
 return y - other.y; // same x; compare y
 }
}

�  The idea:

�  if x > other.x, then x - other.x > 0
�  if x < other.x, then x - other.x < 0
�  if x == other.x, then x - other.x == 0

�  NOTE: This trick doesn't work for doubles (but see Math.signum)

