Building Java Programs

Interfaces, Comparable

reading: 9.5 - 9.6, 16.4, 10.2

HOW TO WRITE GOOD CODE:

START

PROJELT.

DO
THINGS
RIGHT OR DO
JHEM FAST?

NO, AND THE
REQUIREMENTS
HAVE CHANGED,

THROW 1T ALL OOT
AND START OVER.

FAST

—y

(CODE
FAST

DoES NO
ITWORK
YET?

ALMOST, BUT IT5
BECOME A MASS
OF KLUDGES AND
SPAGHETTI CODE.

~\
\.-0 {
N\

:

8
I

e

Consider classes for shapes with common features:

e Circle (defined by radius r):
area =nr?2, perimeter =gy

* Rectangle (defined by width w and height h):

W
area = W h, perimeter = 2w + 2h
h
* Triangle (defined by side lengths a, b, and ¢)
area =V(s(s-a)(s-b)(s-0))
wheres =% (a + b + ©), . b
perimeter =a+ b+ cC

C
Every shape has these, but each computes them differently.

Interfaces (9.5)

* interface: A list of methods that a class can promise to
implement.

Inheritance gives you an is-a relationship and code sharing.
« A Lawyer can be treated as an Employee and inherits its code.

Interfaces give you an is-a relationship without code sharing.
« A Rectangle object can be treated as a shape but inherits no code.

Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."”

- "I'm 'certified' as a Shape, because I implement the Shape
interface.

This assures you I know how to compute my area and perimeter."

Interface syntax

public 1nterface name {
public type name (type name, ..., type name);
public type name (type name, ..., type name);

public type name (type name, ..., type name);
}

Example:
BIUY e e i e S M S R Y e S
public 1nt getSpeed();
public void setDirection (int direction);

public interface Shape {
public double area();

publresdouble parameror () ;

}

Saved as Shape.java

Shape interface

// Describes features common to all shapes.

«interface»
Shape

areaf)
perimeter()
FAN

__

Circle

radius

Rectangle

Circle{radius)
aread)
perimeter()

width, height

Rectanglefw, h)
areaf)
perimeter(

Triangle

ab,c

Triangle{a, b, c)
areaf)
perimeter)

* abstract method: A header without an implementation.
The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.

= —

“Implementing an interface

public class name implements interface {

}

* A class can declare that it "implements" an interface.
The class must contain each method in that interface.

public class Bicycle implements Vehicle {

}

(Otherwise it will fail to compile.)
Bahanaswanva i ewBgnan g erior e bst g e andvdoe Sion:

override abstract method area() in Shape
public class Banana implements Shape {

A

~ Interfaces + polymorphism

o Interfaces benefit the client code author the most.

They allow polymorphism.

(the same code can work with different types of objects)

public static void printInfo (Shape
System.out.println ("The shape:
System.out.println("area : " +
System.out.println ("perim: " +
SysEeminutiprantin)y

Carveleveireisinew (Cirelie G20y
Triangle tri = new Triangle (5, 12,
printinfolcire);

i EovtErage.

s) {

S sy
s.areal());
s.perimeter()) ;
3y

Linked vs. array lists

* We have implemented two collection classes:
ArrayIntlList

index| 0 (1] 2| 3

value |42 -3(17| 9

LinkedIntlList

data | next data | next data | next data | next

2] 4—|3] +—{v | 4+ 9 [

They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

front

An IntList interface

// Represents a list of integers.
public 1nterface IntList {

D
el
public
public
public
i
D
public

vold add(int wvalue);

HOME S Yo e Wi sy AN a e W M AR e s R e
int get (int index);

e e e T e e e

boolean 1sEmpty();

Vo hdwnemavetihnEn indeso e

VT M G R R G R R L A e S R A
e e e

public class ArrayIntlList implements IntList { ...

public class LinkedIntList implements IntList { ...

10

RN oW

Client code w/ interface

public class ListClient {
public static void main(String[] args) {
A e e A R e e S e A
process (listl) ;

VA A e A e e B e WA e M e e AV
process (list2) ;

}

publrcystabtrcivord processtEntliast Tast) i
list.add(18);
list.add (27) ;
Prshivadd 93y
e e o A Y N B R e
list.remove (1) ;
Systemrontaprantinflasseys

11

. Alp- 0 e [1

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework uses interfaces to describe
ADTs:

Collection, Deque, List, Map, Queue, Set

* An ADT can be implemented in multiple ways by classes:

ArrayList and LinkedList implement List
HashSet and TreeSet implement set
LinkedList , ArrayDeque, etc. implement Queue

« They messed up on : there's no interface, just a class.

12

Using ADT interfaces

When using Java's built-in collection classes:

e It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

Ll 8 eSS Ing > s e A e L e S e g e

* Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

eivlodtslietiisnlioncan bleve S s PR Y-S o d ol b B oo e AR RS Re R

13

The Comparable
Interface

reading: 10.2

————

Collections class

Method name

Description

binarySearch (list, value)

returns the index of the given value in
a sorted list (< 0 if not found)

copy (listTo, listFrom)

copies listFrom's elements to listTo

emptyList (), emptyMap (),
emptySet ()

returns a read-only collection of the
given type that has no elements

fill (list, value)

sets every element in the list to have
the given value

max (collection),
min (collection)

returns largest/smallest element

replaceAll (list, old, new)

replaces an element value with another

reverse (list)

reverses the order of a list's elements

shuffle (list)

arranges elements into a random order

sort (list)

arranges elements into ascending order

15

e

Ordering and objects

e Can we sort an array of Strings?
Operators like < and > do not work with string objects.
But we do think of strings as having an alphabetical ordering.

 natural ordering: Rules governing the relative placement
of all values of a given type.

e comparison function: Code that, when given two values
A and B of a given type, decides their relative ordering:

A<B, A==B, A>B

16

————

_ The compareTo method (10.2)

» The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

Example: in the string class, there is a method:

public 1int compareTo (String other)

e A call of A.compareTo (B) will return:
a value <0 if A comes "before" B in the ordering,
a value >0 if A comes "after" B in the ordering,

or O if A and B are considered "equal" in the
ordering.

17

Using compareTo

* compareTo can be used as a test in an if statement.

AN B W A A R e
SAmaal ale el ofe oui
if (a.compareTo(b) < 0) { // true

}

Primitives Objects
s e G o INE P e e e s = e T M e M A R
IR T TEilaicompareTobi =m0
e 1f (a.compareTo(b) == 0) {
e 1f (a.compareTo(b) != 0) {
if (a >= b) { 1f (a.compareTo(b) >= 0) {
ey sl 4 I e I el e Y= = N Y M e A D AR

e ———

compareTo and collections

* You can use an array or list of strings with Java's included
binarySearch method because it calls compareTo internally.

e —

I o ¥ e R e e
int index = Arrays.binarySearch(a, "dan"); // 3

e Java's TreeSet/Map uUse compareTo internally for ordering.

e A call to your compareTo method should return:
avalue< O if this object is "before" the other object,
avalue> 0 if this object is "after" the other object,
or 0 if this object is "equal” to the other.

19

Comparable (10.2)

public interface Comparable<E> {
public ant compareTo (B other):

J

* A class can implement the Comparable interface to define a
natural ordering function for its objects.

e A call to your compareTo method should return:

avalue< O if this object is "before" the other object,
avalue> 0 if this object is "after" the other object,
or 0 if this object is "equal” to the other.

e If you want multiple orderings, use a instead (see

Ch. 13.1)

20

Comparable template

public class Name implements Comparable<name> {

public int compareTo (nAamMe other) {

}

21

compareTo tricks

» delegation trick - If your object's fields are comparable
(such as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public 1nt compareTo (Employee other) {
return name.compareTo (other.getName()) ;

}

* toString trick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo (Date other) {
return toString () .compareTo (other.toString()) ;

}

22

compareTo tricks

» subtraction trick - Subtracting related values produces the
right result for what you want compareTo to return:

// sort by x and break ties by y
By e e ey v st e e Me M e M s e it e et s

TrEvisevili= e Phe reaseraidd
return x - other.x; // different x
} else {
return y - other.y; // same x; compare y
}
}
» The idea:
o if x > other.x, then x - other.x > 0
o if x < other.x, then x - other.x <
waibsciEEve ph ey R en o P h ey sy

« NOTE: This trick doesn't work for doubles (but see Math.signum)
23

