Cryptography

CSE 143 Exploration Session Melissa Winstanley
Slides based on presentation by Josh Benaloh

Internet Security

- The Internet was NOT designed for security.
- Sending data through the Internet is like sending a postcard through the mail...
- ...when you don't trust the post office

A typical internet session

You
Server

I want to make a purchase
What is your credit card number?

My CC number is 123456789999

Basic encryption

Can we AT LEAST protect the credit card number so it won't be revealed to anybody except the merchant?

Kerckhoff's Principle (1883)

- The security of a cryptosystem should depend only on the key.
- You should assume that attackers know everything about your system except the key

Some terminology

- Informally...
- A PIN is a 4-6 digit speed bump
- A password is a short, user-chosen, usually guessable selection from a small dictionary.
- A key is an unguessable, randomly chosen string usually at least 128 bits

Off-Line Attacks

- Don't even think about using user-chosen passwords as encryption keys.
- Don't even think about using keys derived deterministically from user-chosen passwords.
- Given the ciphertext, an attacker can do a (guided) exhaustive search through the space to find the password.

Symmetric cryptography

- If the client has a pre-existing relationship with the merchant, the two parties may have a shared secret key K - known only to these two.
- User encrypts private data with key K.
- Merchant decrypts data with key K.
- Two classes
- Stream ciphers
- Block ciphers

Stream Cipher

- RC4, A5/1, SEAL, etc.
- Use the key as a seed to a pseudo-random number-generator.
- Take the stream of output bits from the PRNG and XOR it with the plaintext to form the ciphertext.
- (1x1->0, 1x0->1, ox1->1, oxo->0)

Plaintext: PRNG (seed): Ciphertext:

Stream Cipher Decryption

Plaintext: PRNG (seed): Ciphertext:

Stream cipher evaluation

- The good
- Usually fast
- Usually simple
- Same function for encrypt and decrypt
- The bad
- Hint: Something XOR'ed with itself disappears, which is why decryption works
- If the same PRNG seed is ever reused...
- $(\mathrm{PT} 1 \times \mathrm{PRNG}) \times(\mathrm{PT} 2 \times \mathrm{PRNG})=(\mathrm{PT} 1 \times \mathrm{PT} 2)$

More bad

- It is easy for an adversary (even one who can' t decrypt the ciphertext)to alter the plaintext in a known way.
- Eg,.Bob to Bob's Bank:
- Please transfer \$0,000,002.00 to the account of my good friend Alice.
- Please transfer \$1,000,002.00 to the account of my good friend Alice.

Block Cipher

Feistel cipher

Encoding

Feistel cipher

Decoding

Feistel performance

- Typically, Feistel ciphers are iterated for about 10-16 rounds.
- Different "sub-keys" are used for each round.
- Even a weak round function can yield a strong Feistel cipher, if iterated sufficiently.

Feistel cipher

Our new encoded system

You
Server

I want to make a purchase
What is your credit card number?

My CC number is $E(12345678$ 9999)

Our new encoded system

You
Server

Please encrypt your \# with our shared secret key
????

Asymmetric cryptography

- What if the user and merchant have no prior relationship?
- Asymmetric encryption allows someone to encrypt a message for a recipient without knowledge of the recipient's decryption key.
- Usually involves lots of math.

The Fundamental Equation

$$
\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{~N}
$$

The Fundamental Equation

$$
\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{~N}
$$

If Z is unknown, it can be computed efficiently.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{N}$

If X is unknown, the problem is called the discrete logarithm and is generally hard to solve

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{N}$

If Y is unknown, the problem is called the discrete root finding and is generally hard to solve, without factorization of N .

The Fundamental Equation

$$
\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{~N}
$$

If N is unknown, the problem is not well studied.

RSA encryption

- Pick two primes p and q, compute $\mathrm{n}=\mathrm{pq}$
- Pick two numbers e and d, such that:
- ed $=(\mathrm{p}-1)(\mathrm{q}-1) \mathrm{k}+1$ (for some k$)$
- Publish n and e (public key), encode with: - (original message) ${ }^{\mathrm{e}} \bmod \mathrm{n}$
- Keep d, p and q secret (private key), decode with:
- (encoded message) ${ }^{\text {d }} \bmod n$

Why does it work?

- Original message is carried to the e power, then to the d power:
- $\left(\mathrm{msg}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{msg}^{\text {ed }}$
- Remember how we picked e and d:
- $\mathrm{msg}^{\mathrm{ed}}=\operatorname{msg}^{(\mathrm{p}-1)(\mathrm{q}-1) \mathrm{k}+1}$
- Apply some simple algebra:
$\circ \mathrm{msg}^{\mathrm{ed}}=\left(\mathrm{msg}^{(\mathrm{p}-1)(\mathrm{q}-1)}\right)^{\mathrm{k}} \times \mathrm{msg}^{1}$
- Applying Fermat's Little Theorem:
- $\mathrm{msg}^{\mathrm{ed}}=(1)^{\mathrm{k}} \mathrm{msg}^{1}=\mathrm{msg}$

A brief history of RSA

- British discovered RSA first but kept it secret
- Phil Zimmerman tried to bring cryptography to the masses w/PGP
- Investigated as an arms dealer by FBI and a grand jury
- Shor's algorithm would break RSA if only we had a quantum computer
- The NSA hires more mathematicians than any other organization

Our RSA based system

You
Server

Please encrypt your \# with my public key E
My CC is $E(12345678$ 9999)

Problems

- Man-in-the-middle attack
- Someone pretends to be the server
- Solution: Certificates
- Need certificate authorities
- Must guarantee the certificate authorities
- Replay attack
- Someone repeats your encoded message
- Solution: a unique nonce (number)

