
CSE 143
Lecture 26

quick sort

slides adapted from Marty Stepp

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Quick sort

• quick sort: Orders a list of values by partitioning the list around
one element called a pivot, then sorting each partition.

– invented by British computer scientist C.A.R. Hoare in 1960

• Quick sort is another divide and conquer algorithm:

– Choose one element in the list to be the pivot.

– Divide the elements so that all elements less than the pivot are to
its left and all greater (or equal) are to its right.

– Conquer by applying quick sort (recursively) to both partitions.

• Runtime: O(N log N) average, O(N2) worst case.

– Generally somewhat faster than merge sort.

3

Choosing a "pivot"

• The algorithm will work correctly no matter which element you
choose as the pivot.

– A simple implementation can just use the first element.

• But for efficiency, it is better if the pivot divides up the array into
roughly equal partitions.

– What kind of value would be a good pivot? A bad one?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 8 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

4

Partitioning an array

• Swap the pivot to the last array slot, temporarily.
• Repeat until done partitioning (until i,j meet):

– Starting from i = 0, find an element a[i] ≥ pivot.
– Starting from j = N-1, find an element a[j] ≤ pivot.
– These elements are out of order, so swap a[i] and a[j].

• Swap the pivot back to index i to place it between the partitions.

index 0 1 2 3 4 5 6 7 8 9

value 6 1 4 9 0 3 5 2 7 8

8 i j 6

2 i j 8

5 i 9

6 9

2 1 4 5 0 3 6 8 7 9

5

Quick sort example

index 0 1 2 3 4 5 6 7 8 9

value 65 23 81 43 92 39 57 16 75 32 choose pivot=65

32 23 81 43 92 39 57 16 75 65 swap pivot (65) to end

32 23 16 43 92 39 57 81 75 65 swap 81, 16

32 23 16 43 57 39 92 81 75 65 swap 57, 92

32 23 16 43 57 39 92 81 75 65

32 23 16 43 57 39 65 81 75 92 swap pivot back in

recursively quicksort each half

32 23 16 43 57 39 pivot=32

39 23 16 43 57 32 swap to end

16 23 39 43 57 32 swap 39, 16

16 23 32 43 57 39 swap 32 back in

81 75 92 pivot=81

92 75 81 swap to end

75 92 81 swap 92, 75

75 81 92 swap 81 back in
... ...

6

Quick sort code

public static void quickSort(int[] a) {

quickSort(a, 0, a.length - 1);

}

private static void quickSort(int[] a, int min, int max) {

if (min >= max) { // base case; no need to sort

return;

}

// choose pivot; we'll use the first element (might be bad!)

int pivot = a[min];

swap(a, min, max); // move pivot to end

// partition the two sides of the array

int middle = partition(a, min, max - 1, pivot);

swap(a, middle, max); // restore pivot to proper location

// recursively sort the left and right partitions

quickSort(a, min, middle - 1);

quickSort(a, middle + 1, max);

}

7

Partition code

// partitions a with elements < pivot on left and

// elements > pivot on right;

// returns index of element that should be swapped with pivot

private static int partition(int[] a, int i, int j, int pivot) {

while (i <= j) {

// move index markers i,j toward center

// until we find a pair of out-of-order elements

while (i <= j && a[i] < pivot) { i++; }

while (i <= j && a[j] > pivot) { j--; }

if (i <= j) {

swap(a, i, j);

i++;

j--;

}

}

return i;

}

9

Choosing a better pivot

• Choosing the first element as the pivot leads to very poor
performance on certain inputs (ascending, descending)

– does not partition the array into roughly-equal size chunks

• Alternative methods of picking a pivot:

– random: Pick a random index from [min .. max]

– median-of-3: look at left/middle/right elements and pick the one
with the medium value of the three:

•a[min], a[(max+min)/2], and a[max]

• better performance than picking random numbers every time

• provides near-optimal runtime for almost all input orderings

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 8 18 91 -4 27 30 86 50 65 78 5 56 2 25 42 98 31

10

Stable sorting

• stable sort: One that maintains relative order of "equal"
elements.

– important for secondary sorting, e.g.

• sort by name, then sort again by age, then by salary, ...

• All of the N2 sorts shown are stable, as is shell sort.

– bubble, selection, insertion, shell

• Merge sort is stable.

• Quick sort is not stable.

– The partitioning algorithm can reverse the order of "equal"
elements.

– For this reason, Java's Arrays/Collections.sort() use merge sort.

11

Unstable sort example

• Suppose you want to sort these points by Y first, then by X:

– [(4, 2), (5, 7), (3, 7), (3, 1)]

• A stable sort like merge sort would do it this way:

– [(3, 1), (4, 2), (5, 7), (3, 7)] sort by y

– [(3, 1), (3, 7), (4, 2), (5, 7)] sort by x

– Note that the relative order of (3, 1) and (3, 7) is maintained.

• Quick sort might leave them in the following state:

– [(3, 1), (4, 2), (5, 7), (3, 7)] sort by y

– [(3, 7), (3, 1), (4, 2), (5, 7)] sort by x

– Note that the relative order of (3, 1) and (3, 7) has reversed.

