
CSE 143
Lecture 14

Maps/Sets; Grammars

reading: 11.2 - 11.3

slides adapted from Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Exercise

• Write a method crawl accepts a File parameter and prints

information about that file.

– If the File object represents a normal file, just print its name.

– If the File object represents a directory, print its name and

information about every file/directory inside it, indented.

cse143

handouts

syllabus.doc

lecture_schedule.xls

homework

1-sortedintlist

ArrayIntList.java

SortedIntList.java

index.html

style.css

– recursive data: A directory can contain other directories.

3

File objects

• A File object (from the java.io package) represents

a file or directory on the disk.

Constructor/method Description

File(String) creates File object representing file with given name

canRead() returns whether file is able to be read

delete() removes file from disk

exists() whether this file exists on disk

getName() returns file's name

isDirectory() returns whether this object represents a directory

length() returns number of bytes in file

listFiles() returns a File[] representing files in this directory

renameTo(File) changes name of file

4

Public/private pairs

• We cannot vary the indentation without an extra parameter:

public static void crawl(File f, String indent) {

• Often the parameters we need for our recursion do not match
those the client will want to pass.

In these cases, we instead write a pair of methods:

1) a public, non-recursive one with the parameters the client wants

2) a private, recursive one with the parameters we really need

5

Exercise solution 2

// Prints information about this file,

// and (if it is a directory) any files inside it.

public static void crawl(File f) {

crawl(f, ""); // call private recursive helper

}

// Recursive helper to implement crawl/indent behavior.

private static void crawl(File f, String indent) {

System.out.println(indent + f.getName());

if (f.isDirectory()) {

// recursive case; print contained files/dirs

for (File subFile : f.listFiles()) {

crawl(subFile, indent + " ");

}

}

}

6

Exercise

• Write a program that counts the number of unique words in a
large text file (say, Moby Dick or the King James Bible).

– Store the words in a collection and report the # of unique words.

– Once you've created this collection, allow the user to search it to
see whether various words appear in the text file.

• What collection is appropriate for this problem?

7

Sets (11.2)

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

– add, remove, search (contains)

– We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

8

Set implementation

• in Java, sets are represented by Set type in java.util

•Set is implemented by HashSet and TreeSet classes

– HashSet: implemented using a "hash table" array;

very fast: O(1) for all operations
elements are stored in unpredictable order

– TreeSet: implemented using a "binary search tree";

pretty fast: O(log N) for all operations
elements are stored in sorted order

– LinkedHashSet: O(1) but stores in order of insertion;
slightly slower than HashSet because of extra info stored

9

Set methods

List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

– can construct an empty set, or one based on a given collection

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

10

The "for each" loop (7.1)

for (type name : collection) {
statements;

}

• Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

– needed because sets have no indexes; can't get element i

11

Exercise

• Write a program to count the number of occurrences of each
unique word in a large text file (e.g. Moby Dick).

– Allow the user to type a word and report how many times that
word appeared in the book.

– Report all words that appeared in the book at least 500 times, in
alphabetical order.

• What collection is appropriate for this problem?

12

Maps (11.3)

• map: Holds a set of unique keys and a collection of values,
where each key is associated with one value.

– a.k.a. "dictionary", "associative array", "hash"

• basic map operations:

– put(key, value): Adds a
mapping from a key to
a value.

– get(key): Retrieves the
value mapped to the key.

– remove(key): Removes
the given key and its
mapped value. myMap.get("Juliet") returns "Capulet"

13

Map implementation

• in Java, maps are represented by Map type in java.util

•Map is implemented by the HashMap and TreeMap classes

– HashMap: implemented using an array called a "hash table";

extremely fast: O(1) ; keys are stored in unpredictable order

– TreeMap: implemented as a linked "binary tree" structure;

very fast: O(log N) ; keys are stored in sorted order

– LinkedHashMap: O(1) ; keys are stored in order of insertion

• A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

14

Map methods

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

15

Using maps

• A map allows you to get from one half of a pair to the other.

– Remembers one piece of information about every index (key).

– Later, we can supply only the key and get back the related value:

Allows us to ask: What is Suzy's phone number?

Map

get("Suzy")

"206-685-2181"

Map

// key value

put("Suzy", "206-685-2181")

16

Maps and tallying

• a map can be thought of as generalization of a tallying array

– the "index" (key) doesn't have to be an int

– count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent

– count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

17

keySet and values

•keySet method returns a Set of all keys in the map

– can loop over the keys in a foreach loop

– can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Marty", 19);

ages.put("Geneva", 2); // ages.keySet() returns Set<String>

ages.put("Vicki", 57);

for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(name); // Marty -> 19

System.out.println(name + " -> " + age); // Vicki -> 57

}

•values method returns a collection of all values in the map

– can loop over the values in a foreach loop

– no easy way to get from a value to its associated key(s)

Languages and Grammars

19

Languages and grammars

• (formal) language: A set of words or symbols.

• grammar: A description of a language that describes which
sequences of symbols are allowed in that language.

– describes language syntax (rules) but not semantics (meaning)

– can be used to generate strings from a language, or to determine
whether a given string belongs to a given language

20

Backus-Naur (BNF)

• Backus-Naur Form (BNF): A syntax for describing language
grammars in terms of transformation rules, of the form:

<symbol> ::= <expression> | <expression> ... | <expression>

– terminal: A fundamental symbol of the language.

– non-terminal: A high-level symbol describing language syntax,
which can be transformed into other non-terminal or terminal
symbol(s) based on the rules of the grammar.

– developed by two Turing-award-winning computer scientists in 1960 to
describe their new ALGOL programming language

21

An example BNF grammar

<s>::=<n> <v>

<n>::=Marty | Victoria | Stuart | Jessica

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

Marty slept

Jessica belched

Stuart cried

22

BNF grammar version 2

<s>::=<np> <v>

<np>::=<pn> | <dp> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the carrot cried

Jessica belched

a computer slept

23

BNF grammar version 3

<s>::=<np> <v>

<np>::=<pn> | <dp> <adj> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<adj>::=silly | invisible | loud | romantic

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the invisible carrot cried

Jessica belched

a computer slept

a romantic ball belched

24

Grammars and recursion

<s>::=<np> <v>

<np>::=<pn> | <dp> <adjp> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<adjp>::=<adj> <adjp> | <adj>

<adj>::=silly | invisible | loud | romantic

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Grammar rules can be defined recursively, so that the
expansion of a symbol can contain that same symbol.

– There must also be expressions that expand the symbol into
something non-recursive, so that the recursion eventually ends.

25

Grammar, final version

<s>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=the|a

<adjp>::=<adj>|<adj> <adjp>

<adj>::=big|fat|green|wonderful|faulty|subliminal

<n>::=dog|cat|man|university|father|mother|child

<pn>::=John|Jane|Sally|Spot|Fred|Elmo

<vp>::=<tv> <np>|<iv>

<tv>::=hit|honored|kissed|helped

<iv>::=died|collapsed|laughed|wept

• Could this grammar generate the following sentences?
Fred honored the green wonderful child

big Jane wept the fat man fat

• Generate a random sentence using this grammar.

26

Sentence generation

<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp><adj>

childgreen

<adj>

wonderful

